
TICkit X-Tender
1.1 What is an X-tender, and what can I use it for?
The TICkit X-tender is a peripheral IC that connects to any I2C buss, typically a TICkit  micro-controller.
This single 28 pin IC sub-processor provides additional resources for the controller that it is connected to.
128 bytes of static RAM, 8 general purpose input output lines, a real-time-clock/calander, 5 A/D channels, a
16bit timer, 2 Capture-Compare-PWM modules, a SIN lookup table,  an ATN lookup table, A buffered
unipolar stepper motor driver, 4 8bit 100hz PWM generators for use as pulse generators or elementary D/A
channels, buffered rs232 module, and a CSMA/CD with computed backoff network module are contained in
an X-tender IC.

The TICkit controls the X-tender by using the I2C_WRITE and I2C_READ operations that are built into
TICkit Interpreters (version 3.0 and higher). These commands issue 2 or 3 byte messages on the I2C clock and
data lines. The same lines that are used by the program storage EEprom. Concequently, none of the TICkit I/O
lines are lost to communicate with up to 8 X-tender devices.

1.2 Hardware Interconnection
Connecting to an X-tender could not be simpler. Just
hook pin number 14 of the X-tender to pin number
10 of the TICkit IC and hook pin number 15 of the
X-tender to pin number 9 of the TICkit IC. (The
TICkit Assembly Board has a two pin socket labeled
I2C which is connected to these two pins. I2C data is
the lower pin and I2C clock is the upper pin of this
socket pair) Apply power to the X-tender and the two
devices are electrically connected. Most circuits will
also connect the reset of the TICkit to the reset of the
Xtender devices. (note: there has been some
suggestion that the PIC16C73 fails to reset properly
when using its internal voltage detection and
Power-On reset circuit). The diagram illustrates the
connection of two Xtender devices and a TICkit.
Longer Connection schemes should terminate the I2C
wires at each physical end with resistors to +5vdc.
The TICkit assembly board can serve as one physical end since it already terminates the I2C buss with two
22K resistors.

The cable characteristics as well as the termination resistance on the I2C buss is very important. The buss runs
at 400kbps and is very sensitive to the rising and falling edge shapes of the signals. If many devices are to be
placed on the buss, or if these devices are to be very far apart, high quality twisted pair or shielded wire
should be used. Termination resistance may also need to be determined experimentally. Experience suggests
that 22K ohm resistance on both physical ends of the buss works the best, but this value is influenced by
cabling and line loading. The 4mhz TICkit device is considerably less sensitive to buss constraints since its
throughput is less than 100kbps.

1.3 Software Interconnection
8 or more X-tender devices can be connected to a TICkit in parallel. The TICkit is able to control each device
independently by using the addressing characteristics of the I2C buss. Each X-tender is ordered with a unique
I2C 3 bit address. This address is contained in the part number of the specific X-tender you are connecting.
Obviously, each X-tender on an I2C bus must be unique to prevent messages from getting confused. Each of
the 16bit commands consists of an address, a read/write flag, and an 8bit command. On the basis of this
command, the X-tender will either listen for an 8bit data byte or it will prepare to send an 8bit data byte at the
next inquire command.

page 1



1.4 X-tender commands
The command table sumarizes the commands that control an X-tender peripheral IC.  To form the command
address word, the address contained in the part number must be multiplied by 0x200, added to hexidecimal
0x8000 then added to the command value shown in the table. For example, If the part number of an Xtender
IC is X73C-I1, the final suffex gives the I2C address as one. To write an ASCII letter 'A' to the RS232 output
buffer, the following FBASIC line could be used:

Reading from the RS232 buffer is also easy. In this case assume the part number for the IC is X73C-I7. To
read a value from the buffer the line could be:

When an I2C read or write function is unable to communicate with an Xtender, the address argument will be
cleared. The following example tests to ensure an Xtender IC acknowleged the command:

1.5 Stepper Driver Module
The stepper driver is designed to control unipolar stepper motors. Four of the general purpose I/O pins (GP4
thru GP7) are configured as coil control outputs when the stepper module is enabled. GP2 and GP3 are
sampled as the limit inputs if the "go until limit" mode of the stepper module is utilized. (The user must
configure GP2 or GP3 as inputs when limits are used.) The stepper module is double buffered so it holds two
stepper movement commands, the current command and the next command. Each command consists of an 8
bit period per step, and a signed 16 bit count of steps to execute. When the currenct count reaches zero, the
next step command is shifted to the current registers, an interrupt is generated, and the step command is
executed. The period register is in 1/6400 sec units. The stepper module has four modes of operation. The first
is to simply step until the current count reaches zero. The other three modes will step until the current count is
zero, or until one, the other, or both of the GP2 and GP3 limit inputs go to a low level. This is used to
implement limits and initial index searches. Once a limit or terminal count has been reached the next step
command will be loaded and executed in unconditional step mode. A sample stepper circuit using the Xtender
is contained at the end of this data sheet.

1.6 Serial Communications Module
The Xtender implements an intellegent buffered serial port. This port can be configured in one of four modes
of operation. Three of these modes implement different buffering strategies for asynchonous RS232 type
communications. The fourth mode implements a shared wire network packet protocol. This protocol sends 8
byte packets to another Xtender device with a specified node address. The protocol uses Carrier Sense with
Multiple Access combined with Collision Detection and psuedo random backoff to achieve a master-less
network. This means that any node which wishes to communicate with another simply loads the destination
node address, loads the 8 byte message into the transmit buffer and waits for a response from the Xtender
indicating a successful or failed transmission. The Xtender automatically retries 32 times. Likewise, the
Xtender takes care of receiving messages just as easily, by interrupting the controller when a message has been
received. The Xtender will automatically inform other sending nodes if it is busy, and automatically records
the source of the current packet received.

Buffered asynchronous serial simply divides 16 bytes of buffer space among the transmit and receive tasks.
Mode 1 buffers the received data 18 deep and buffers the transmitted data 2 deep. Mode 2 buffers the
transmitted data 18 deep and buffers the received data 2 deep. Mode 3 buffers the received data 10 deep and
buffers the transmitted data 10 deep. The Xtender interrupts the controller whenever received data is present
and whenever there is space available in the transmit buffer.

page 2



1.7 General Purpose PWM module
Four of the general purpose I/O pins (GP0 thru GP3) can be configured in the Xtender to be 8 bit 100 hz
PWM outputs. This is different from the 10bit dedicated PWM module mentioned below. These outputs are
controlled internally by the Xtender software to be exactly 100 hz signals with a duty cycle between 0 and
255/256. Because the rate of these signals in known (100 hz), these signals can also be used to control RC
type servos as a pulse train. The on time of each signal is equal to its value multiplied by 1/25600 second. To
achieve a duty cycle of 256/256 the pwm control must be turned off for that output and the pin set to a
continuous high level. PWM on GP2 or GP3 will interfere with limit sensing if the stepper motor module is
used in limit sensing mode.

These four PWM outputs can also be used with a capacitor to ground to acheive a rudimentary 8 bit D/A
capability. Assuming the load of on the capacitor is minimum (impedance greater than 10k ohms), the output
voltage swing will range linearly between 0 volt and 1275/256 (4.98) volts. Settling time is between 1/100
and 1/10 second.

1.8 A/D Module
The 5/4 channel A/D capability of the Xtender IC is native to the PIC16C73. Simply enter the A/D mode in
the control register and read the result of the conversion. The conversion takes place at the time of the read.
The A/D is fast enough that the I2C buss is simply halted for a fraction of a I2C byte time to get the
conversion result. One of the 5 A/D inputs can be configured as a voltage reference instead of as an input
channel. A reading of 255 will be equal to an input of the voltage reference. If the reference is selected as
internal, a reading of 255 corresponds to Vdd of the Xtender IC.

1.9 16 bit Event Counter or Oscillator based timer
The 16bit Counter/Timer module is also native to the PIC16C73. This 16bit counter can count rising or
falling edge events on pin 11 of the Xtender, or it can internally count Oscillator time cycles. One count
equals 1/4915200 second. A prescaller can also be assigned to divide events or time cycles before the counter
to acheive a greater count range.

Two additional pins can be configured to use the 16bit counter/timer for input capture, or for compare output.
These input modules, called the CCP modules can store the count at the time of a rising or falling edge, or can
output a high signal when the 16bit count exceedes a pre-set comparison value. This can be useful for
generating square waves or for timing pulse events.

1.10 CCP modules for 10bit dedicated PWM
The two pins mentioned in the previous section can also be configured in the CCP modules to perform a 10
bit PWM function. The PWM function uses an internal counter to determine the period and duty cycle of the
PWM signal. The period is determined by loading an 8bit value into the register designated timer 2 and the
duty cycle is determined by setting the CCP register appropriately. See the PIC16C73 documentation or
VersaTech BBS for more details on dedicated PWM and CCP functions

1.11 The Real Time 32 bit seconds counter
The Xtender is programmed to count the number of seconds that have elapsed since either the power was
applied to the device, or since the 32 bit seconds counting register was last set. There is also a 1/100 second
counter accessable to the controller. The 32 bit seconds counter is buffered, so reading the LSB of the count
will capture the entire count. Conversely, when writing a count to the counter, the counter will only be
updated after the MSB is written to the Xtender.

1.12 1/100, 1/10, 1, and 10 second time base
The Xtender can generate an interrupt every 1/100, 1/10, 1, or 10 seconds when told to do so. Simply setting
the corresponding bit will enable the time base. When the time next time interval is reached, the
cooresponding interrupt flag bit will be set. If the interrupt enable for this flag is set, the interrupt output pin
(pin 6 ) will be pulled low. The Controller must reset the interrupt flag bit immediately to ensure the next
interval will be sensed. The Controller may either respond to interrupts, or simply poll the interrupt flag
register.

page 3



1.13 Trigonometric Tables
Two trigonometric lookup tables are implemented on the Xtender. A SIN lookup table for the region from 0
degrees to 89.65 degrees is provided with an output range between 0 and 256. An ATN lookup table for the
ratio region of 255/256 to 0. These tables obviously require some cooersion by the controller for the specific
application.

The SIN table uses an 8 bit angle value scaled between 0 degrees as 0 and 89.65 degrees as 255. The controller
will need to adjust the output for the specific quadrant the SIN or COS is using on the basis of the angle
involved. Furthermore, the output of the table for angles close to 90 degrees will be zero, The controller will
need to understand that an output of zero in these regions is to be interpretted as 256. Most real world
applications will already have quadrant and full scale logic requirements, so these tables should provide a
good working basis for most trigonometic uses.

The ATN table uses an 8bit ratio value scaled between 0 for a 0 degree vale and 255/256 which cooresponds
to an angular output of very near 45 degrees. The controller will need to consider the sign and magnitude of
the ratio and adjust the table output for the proper octant. If a ratio is greater than 1, (256 table input), then the
recipricol should be entered into the table and a value of 90 degrees less the table result will be the quadrant
one angle. This ATN scheme avoids the undefined values associated with 90 degrees or the large ratios for
tangents of angles between 45 degrees and 90 degrees.

1.14 Static Random Access Memory
128 bytes of SRAM are available for general volitale storage purposes. FBASIC's SEQUENCE and RECORD
directives can be used to allocate and access Xtender SRAM in an organized fashion.

1.15 General Purpose Input and Output
The eight general purpose pins can be used by the stepper module, the general purpose pwm module, or be
used simply as steady state outputs or unlatched inputs. The output is double buffered which assures that pins
can be switched between inputs and outputs without adversely effecting other output pin levels. The outputs
can be set absolutly, or two special commands can be used to set the specified pins high/low while leaving the
other pins unchanged. Likewise the direction of the general purpose pins can be set to input/output for
specified pins while leaving the unspecified pins' directions unchanged.

1.16 Xtender Implementation Limits
The current version of the Xtender  has  not been completely tested with regard to the CSMA/CD network
protocol. Register assignments for the network can be assumed to be accurate in later releases.

1.17 Coding Example using a Header file
Although the I2C extender is controlled
using 16bit numeric commands, it is best not
to use these values in your program directly.
This makes the program harder to write and
to read. To simplify the control of the
Xtender, a file called "xtn73e.lib" is
contained on all revision 5 and later release
disks that defines textual names for all of the
commands.

The program to the right is an example of
how to use this header file and the symbolic
constants it contains to make a readable
program. You will also notice the use of the '|'
compiler operator which sums the adjacent
constants while the program compiles. This is
used extensively with Xtender commands to
form a full 16bit command from the xtender
device address and specific commands.

page 4



Xtender command summary. (consult the xtn73_e.lib file for symbolic names)

page 5

R/W Command Description of Command
 1 xxxx xxxx Read data from previous command

Execute folloing a repeate start bit.
 x 0aaa aaaa Read/Write RAM at address
 x 1000 0000 Read/Write Port Pins

Writing the Port Pin buffer directly may
interfere with GP PWM or Stepper functions. 
Port Set high/lowfunctions are prefered.

 x 1000 0001 Read/Write Port Direction Register
 0 1000 0010 Write A/D control register

byte format = 00cc c1rp
  ccc = channel number
  r = 1 selects RA3 as voltage reference

p = 1 powers the A/D resistive ladders
 1 1000 0010 Read A/D conversion result
 x 1000 0011 Read/ Write Timer 1 control register

byte format = 00pp 00ce
  pp = prescale division ( 1,2,4,8 )
  c = 1 selects external clock, 0 is osc/4
  e = 1 enables timer 1 counting
 x 1000 0100 Read/Write Timer 2 control register

btye format = 0sss sepp
  ssss = postscaler division value
  e = 1 enables timer 2 counting
  pp = prescaler division ( 1, 4, 16, 16 )
 x 1000 0101 Read/Write Timer 2 count register
 x 1000 0110 Read/Write Timer 2 period register
 x 1000 0111 Read/Write Timer 1 count (low byte)

This command captures the count when
 reading for high byte to ensure validity.
 This command halts counting when
 writing until the high byte is written.

 x 1000 1000 Read/Write Timer 1 count (high byte)
Writes to this register restart counter 1.

 x 1000 1001 Read/Write Capture-Compare Control 1
byte format = 00rr mmmm
  mmmm = mode as follows
    0000 = CCP 1 off (no function)
    0100 = Capture on every falling edge
    0101 = Capture on every rising edge
    0110 = Capture on 4th rising edge
    0111 = Capture on 16th rising edge
    1000 = Compare, output 1 on match
    1001 = Compare, output 0 on match
    1010 = Compare, interrupt on match
    1011 = Compare, clear  tmr1 on match
    11xx = Pulse Width Modulation
  rr = 10 bit resolution low order bits
    keep as 00 for 8bit resolution

 x 1000 1010 Read/Write Capture-Compare Control 2
byte format = 00rr mmmm
  mmmm = mode as follows
    0000 = CCP 2 off (no function)
    0100 = Capture on every falling edge
    0101 = Capture on every rising edge
    0110 = Capture on 4th rising edge
    0111 = Capture on 16th rising edge
    1000 = Compare, output 1 on match
    1001 = Compare, output 0 on match
    1010 = Compare, interrupt on match
    1011 = Compare, Start A/D conv. and clear tmr1
    11xx = Pulse Width Modulation
  rr = 10 bit resolution low order bits

keep as 00 for 8 bit resolution.
 x 1000 1011 Read/Write Capt-Comp Reg 1 low byte
 x 1000 1100 Read/Write Capt-Comp Reg 1 high byte
 x 1000 1101 Read/Write Capt-Comp Reg 2 low byte
 x 1000 1110 Read/Write Capt-Comp Reg 2 high byte
 x 1000 1111 Read/Write RTC 1/100 second tic count

Reads from this register capture entire RTC count . 

R/W Command Description of Command
 x 1001 0000 Read/Write RTC seconds, byte 0 (LSB)
 x 1001 0001 Read/Write RTC seconds, byte 1
 x 1001 0010 Read/Write RTC seconds, byte 2
 x 1001 0011 Read/Write RTC seconds, byte 3 (MSB)

Writes to this register load the entire RTC  count.
 0 1001 0100 Write RS232 transmit buffer.
 1 1001 0100 Read RS232 receive buffer.
 x 1001 0101 Read/Write Interrupt Enable Register 1

byte format as follows:
bit 0 = 1/100 second interrupt
bit 1 = 1/10 second interrupt
bit 2 = 1 second interrupt
bit 3 = 10 second interrupt
bit 4 = RS232 received character
bit 5 = RS232 xmit buffer empty
bit 6 = RS232 net message received
bit 7 = RS232 net message xmitted

 x 1001 0110 Read/Write Interrupt Enable Register 2
bit 0 = Compare interrupt for CCP1
bit 1 = Compare interrupt for CCP2
bit 2 = Current Stepper Sequence Finished
bit 3 = Timer 1 overflow.
bit 4 = RS232 net error (xmit retrys exceeded)

 0 1001 0111 Acknowlege Interrupt 1 and clear
Clear by setting the bit that cooresponds to the
Enable and Flag bit. RS232  interrupts can be
cleared only by reading or writing the buffer.

 1 1001 0111 Read Interrupt Flag register 1
Flags int conditions. Same format as  enable 1

 0 1001 1000 Acknowlege Interrupt 2 and clear
Clear by setting the cooresponding bit.

 1 1001 1000 Read Interrupt Flag register 2
Flags int. conditions. Same format as enable 2 

 x 1001 1001 Read/Write RS232 transmit status
byte format = mpeo cccc

cccc = buffer count
m = xmit buffer mode
p = 1 packet being sent/data being sent
e = xmit buffer is empty
o = overflow (used internally)

 x 1001 1010 Read/Write RS232 receive status
byte format = mpfo cccc

cccc = buffer count
m = receive buffer mode
p = packet received
f = framing error has occured
o = overrun error has occured

 0 1001 1011 Set General Purpose pin output low
Only pins with bits set high will be cleared.

 1 1001 1011 Read Port output buffer (not pin levels).
 0 1001 1100 Set General Purpose pin output high

Only pins with bits set low will be set.
 1 1001 1100 Read Port output buffer (not pin levels).
 0 1001 1101 Set General Purpose pin to output
 1 1001 1101 Read IC Revision Number.
 0 1001 1110 Set General Purpose pin to input
 1 1001 1110 Read IC Revision Number then Reset IC.
 x 1001 1111 Read/Write G. P. PWM and stepper  motor control.

Configure Four general purpose pins  to output
pulses with 256 levels of duty cycle for PWM.
Frequency is  100 cycles per second. Configure 
higher four general purpose I/O pins for 
unipolar stepper motor phases.
byte format = hlgo pppp

pppp = PWM pin control for GP 0,1,2,3
o = 1  turns step signals on  for GP 4,5,6,7
g = 1 execute step command
l  = 1 executes steps until GP4 is low
h = 1 executes steps until GP5 is low



page 6

R/W Command Description of Command
 x 1010 0000 Read/Write General Purpose pin PWM 0

Pin is high between 0 and 255 intervals.
one interval = 1/25600 second.

 x 1010 0001 Read/Write General Purpose pin PWM 1
 x 1010 0010 Read/Write General Purpose pin PWM 2
 x 1010 0011 Read/Write General Purpose pin PWM 3
 x 1010 0100 Read/Write Current Stepper Count (low)
 x 1010 0101 Read/Write Current Stepper Count (high)
 x 1010 0110 Read/Write Current Stepper Period
 x 1010 0111 Read/Write Next Stepper Count (low)
 x 1010 1000 Read/Write Next Stepper Count (high)
 x 1010 1001 Read/Write Next Stepper Period
 0 1010 1010 Write RS232 Baud Rate Divisor / 64
 1 1010 1010   Read Baud Rate Divisor (div 64 or 16)
 0 1010 1011 Read/Write RS232 Baud Rate Divisor / 16
 1 1010 1011 Read Baud Rate Divisor (0=64, 255=16)
 x 1010 1100 Read/Write SIN angle (0-255 = 0-89.95 degrees)
 x 1010 1101 Read/Write ATN ratio (0-255 = 0 to .9995)
 x 1010 1110 Read/Write Destination Address for  Net Packet

Write to this register only when in Net Mode.
Writing to this regiser resets the xmit packet
pointer to the first byte of packet. Reading this
register initiates packet transmission.

 x 1010 1111 Read/Write Source Address of Net Packet
Write to this register only when in Net Mode.
Writing to this register resets the receive packet
pointer to the first byte of packet. Writing this
register enables additional packet reception.

R/W Command Description of Command
 x 1011 0000 Read/Write Network Node Address

This is the Identification for this device on a Net.
Values of 1 to 127 are suggested for upward 
compatibility with variable length packets.

 x 1011 0001 Read/Write  Network Status Register. Writing to
this register may produce unpredictable results.

Byte Format = ixds a00w
i = Ignore activity in this packet
x = Transmitting packet

    d = Data/ Header info
s = Source/Dest or Checksum/Data
a = Acknowlege byte

 w = waiting for  reception of data
 x 1011 0010 Not Implemented
 x 1011 0011 Not Implemented
 x 1011 0100 Not Implemented
 x 1011 0101 Not Implemented
 x 1011 0110 Not Implemented
 x 1011 0111 Not Implemented
 x 1011 1000 Not Implemented
 x 1011 1001 Not Implemented
 x 1011 1010 Not Implemented
 x 1011 1011 Not Implemented
 x 1011 1100 Not Implemented
 x 1011 1101 Not Implemented
 x 1011 1110 Not Implemented
 x 1011 1111 Not Implemented


