
1 Getting Started 3
1.1 The Goal Here is "Instant Gratification". 3.

1.2 Overview of the process. 3.

1.3 Step One: Connect the cables . 4.

1.4 Step two: Compiling a program . 5.

1.5 Step three: Getting the program inside the TICkit . 6.

1.6 If you are having trouble . 7.

1.7 The TICkit development cycle: The standard routine . 7.

1.8 What next? . 9.

2 The TICkit Launcher 10
2.1 What is a launcher? How will it help when programing?. 10.

2.2 How to configure the TICkit launcher for a program.. 10.

3 FBASIC Anatomy 12
3.1 Dissecting the sample program, "first.bas" . 12.

3.2 A word about libraries . 12.

3.3 A more elegant "first.bas". 15.

3.4 FBASIC line syntax (labels, remarks, conditionals). 16.

3.5 Constants, constants, and more constants. 17.

3.6 Using DEFINES and Constant Operators. 18.

3.7 String constants and implicit allocation . 19.

3.8 Allocation Constants and Field Names . 19.

3.9 Variables, Global vs Local and precious RAM space. 21.

3.10 Variable Arrays and Indirection . 22.

3.11 Functions, parameters, and exit value . 24.

3.12 A device driver library for the LTC1298 (12bit A/D). 25.

3.13 Captain, I think the functions are overload'n! . 28.

3.14 What's Next? . 29.

3.15 Check out the the Protean Web Site. 29.

4 Simple Examples 30
4.1 A simple program to blink an LED. 30.

FBASIC TICkit Table of Contents

Protean Logic i

4.2 Construction techniques and power sources. 33.

4.3 A simple PWM circuit for controlling a low voltage DC motor.. 34.

4.4 Controlling relays for motor direction and electric braking. 38.

4.5 Closed Loop Circuit Feedback in Control Circuits. 42.

4.6 Reading and Debouncing Switches. 44.

4.7 Using Protean's I2C Xtender IC for more resources. 50.

4.8 Connecting with Other Resources via I2C. 53.

4.9 Using a 3-wire interface to control tons of LEDs. 59.

4.10 Using the Bus Routines to Control an LCD module. 62.

4.11 Fixed Point Arithmetic. 68.

4.12 Using the CCP Input to Measure a Pulse. 71.

4.13 Using Timer1 to calculate RPM. 73.

4.14 Interfacing to RS232 devices. 74.

4.15 Using the RSB509 to Receive RS232 in Background.. 79.

4.16 Example Summary . 81.

5 FBASIC Keywords 83
ALIAS . 84.

ALLOCATE . 85.

ANOTE . 85.

BREAK . 85.

CALL . 86.

DEFINITION . 86.

EQUIVALENT . 86.

EXIT . 86.

FIELD . 87.

FUNCTION . 87.

GLOBAL . 87.

GOSUB . 88.

GOTO . 88.

IF . 88.

IFDEFINED . 89.

Table of Contents FBASIC TICkit

ii Protean Logic

IFNOTDEFINED . 89.

INCLUDE . 89.

INITIAL . 89.

INTERNALS . 90.

KEYWORD . 90.

LIBRARY . 90.

LOCAL . 90.

MEMORY . 91.

OPERATION . 91.

PARAMETER . 91.

PROTOTYPE . 92.

RECORD . 92.

REPEAT . 92.

RETURN . 93.

SEQUENCE . 93.

SIZE . 93.

TYPE . 93.

VECTOR . 94.

WATCH . 94.

WHILE . 94.

6 Standard Function Library 95
6.1 Standard Libraries: "....What do they contain, Books?". 95.

6.2 Standard Library Summary . 96.

6.3 Additional Libraries Summary . 97.

6.4 Assignment and Size Conversion Functions. 97.

= Assignment . 97.

trunc_byte Truncates a larger size to a byte. 97.

trunc_word Truncates a larger size to a word . 98.

to_word Extends a smaller size to a word . 98.

to_long Extends an (argument) to long size. 98.

6.5 Mathematical Functions . 98.

FBASIC TICkit Table of Contents

Protean Logic iii

+ Arithmetic Sum . 99.

++ Increment by One . 99.

- Arithmetic Difference . 99.

- Arithmetic Inverse (change sign) . 99.

-- Decrement by One . 99.

* Arithmetic Product . 100.

/ Arithmetic Division . 100.

% Arithmetic Modulus (Remainder) . 100.

array_byte Calculate Address of a byte array element. 100.

array_word Calculate Address of a word array element. 101.

array_long Calculate Address of a long array element. 101.

array_size Calculate Address of an array element. 101.

6.6 Bit Manipulation Functions . 101.

b_and 8 and 16 bit Bitwise logical and function . 102.

b_or 8 or 16 bit Bitwise logical OR function. 102.

b_xor 8 or 16 bit Bitwise logical exclusive or function. 102.

b_not 8 or 16 bit Bitwise logical complement function. 102.

>> 8 and 16 bit arithmetic shift argument to the right. 102.

<< 8 and 16 bit arithmetic shift argument to the left 102.

b_set Set bits in an 8 or 16 bit field by mask. 102.

b_clear Clear bits in an 8 or 16 bit field by mask. 103.

b_test Tests bits in an 8 or 16 bit field by mask. 103.

6.7 Logical And Relational Test Functions. 103.

== Multi-precision relational test for equal . 104.

>= Multi-precision rel. test for greater than or equal 104.

<= Multi-precision relational test for less than or equal 104.

> Multi-precision relational test for greater than . 105.

< Multi-precision relational test for less than . 105.

<> Multi-precision relational test for not equal . 105.

and Perform logical AND conjunction on two bytes. 105.

or Perform logical OR conjunction on two bytes. 106.

Table of Contents FBASIC TICkit

iv Protean Logic

not Perform logical NOT on a byte . 106.

6.8 Input and Output Functions . 106.

pin_high Make pin a high logic output . 106.

pin_low Make pin a low logic output . 107.

pin_in Make pin an input and return logic level . 107.

aport_get Get byte representing pin levels of address port. 107.

dport_get Get byte representing pin levels of data port. 107.

aport_set Set pin levels of address port . 107.

dport_set Set pin levels of data port . 107.

atris_get Get status of address pin tristate levels . 107.

dtris_get Get status of data pin tristate levels . 107.

atris_set Set tristate levels for address pins . 107.

dtris_set Set tristate levels for data pins . 108.

pulse_in_low Measure duration of a low pulse. 108.

pulse_in_high Measure duration of a high pulse . 108.

pulse_out_low Generate a low pulse on a pin . 108.

pulse_out_high Genereate a high pulse on a pin . 108.

cycles Generate square wave cycles on a pin. 108.

rc_measure Measure the resistance/capacitance at a pin. 109.

6.9 Eeprom Routines (Pointer Dereferencing) . 109.

ee_read Read a byte at EEprom address . 110.

ee_read_word Read a word at EEprom address . 110.

ee_read_long Read a long at EEprom address . 110.

ee_write Write a byte to EEprom address . 110.

6.10 IIC Peripheral Functions . 111.

i2c_write Write a command and data byte to bus. 112.

i2c_read Read a byte from an addressed device. 112.

6.11 Parallel Bus And Lcd Functions . 113.

buss_setup Setup address and data pins for bus I/O 114.

buss_read Read a byte from bus address . 114.

buss_write Write byte to bus address . 114.

FBASIC TICkit Table of Contents

Protean Logic v

lcd_init4 Initializes an LCD module for 4 bit data bus. 114.

lcd_init8 Initializes an LCD module for 8 bit data bus. 114.

lcd_cont_wr Writes a byte to LCD control register 115.

lcd_data_wr Writes a byte to LCD data register. 115.

lcd_string Writes a string to the LCD . 115.

lcd_out Writes a number to the LCD. 115.

lcd_fmt Writes a formatted long to the LCD. 115.

6.12 Timing and Counting Functions . 116.

delay Delay processing for milliseconds . 116.

sleep Delay processing and conserve power for a time. 117.

rtcc_get Get the current count of the RTCC register 117.

rtcc_set Set the count of the RTCC register . 117.

rtcc_int RTCC source is internal clock . 117.

rtcc_int_16 RTCC source internal and prescaled by 16. 117.

rtcc_int_256 RTCC source internal and prescaled by 256. 117.

rtcc_ext_rise RTCC source is external clock . 117.

rtcc_ext_fall RTCC source is external clock . 118.

rtcc_count Count while delaying for milliseconds. 118.

rtcc_wait Wait until RTCC count rolls over to zero 118.

6.13 RS232 and Communications Functions . 118.

rs_param_set Set RS232 parameters . 119.

rs_break Send RS232 break condition . 120.

rs_param_get Get RS232 parameters . 120.

rs_send Send byte out RS232 pin (TICkit57) . 120.

rs_send Send byte out RS232 pin (TICkit62) . 120.

rs_receive Receive byte in RS232 pin (TICkit57) 120.

rs_receive Receive byte in RS232 pin (TICkit62) 121.

rs_recblock Receive array of bytes in RS232 pin. 121.

rs_string Send a string of bytes out RS232 pin. 121.

rs_delay Delay one and one half RS232 bit times 122.

rs_stop_chek Set RS232 stop bit protocol on . 122.

Table of Contents FBASIC TICkit

vi Protean Logic

rs_stop_ignore Set RS232 stop bit protocol off . 122.

rs_fmt Sends a formatted long out RS232 pin. 122.

6.14 Console Functions . 123.

con_test Test for the existance of a console . 123.

con_in_char Get a character from console (TICkit57) 124.

con_in_char Get a character from console (TICkit62) 124.

con_in_byte Get a byte from the console (TICkit57) 124.

con_in_byte Get a byte from the console (TICkit62) 124.

con_in_word Get a word from the console (TICkit57) 124.

con_in_word Get a word from the console (TICkit62) 124.

con_in_long Get a long from the console (TICkit57). 124.

con_in_long Get a long from the console (TICkit62). 125.

con_out_char Send a byte character to the console 125.

con_out Sends a numeric value to the console . 125.

con_string Send a string of bytes out console pin. 125.

con_fmt Sends a formatted long to the console. 125.

6.15 System, Interrupt and Miscellaneous Functions. 126.

debug_on Turn debug protocol on . 127.

debug_off Turn debug protocol off . 127.

irq_on Turn interrupt sensing on . 127.

irq_off Turn interrupt sensing off . 127.

reset Resets the token interpreter . 127.

int_cont_set Sets control byte for global_int (TICkit62). 127.

int_cont_get Gets control byte for global_int (TICkit62). 128.

int_flag_set Sets Peripheral Flag byte (TICkit62) 128.

int_flag_get Gets Peripheral Flag byte (TICkit62) 128.

int_mask_set Sets Peripheral Mask byte (TICkit62). 128.

int_mask_get Gets Peripheral Mask byte (TICkit62) 128.

6.16 Peripheral Control Functions . 129.

tmr1_cont_set Sets TMR1 control register (TICkit62) 130.

tmr1_cont_get Gets TMR1 control register (TICkit62). 130.

FBASIC TICkit Table of Contents

Protean Logic vii

tmr1_count_set Sets TMR1 count (TICkit62) . 130.

tmr1_count_get Gets TMR1 count (TICkit62) . 130.

tmr2_cont_set Sets TMR2 control register (TICkit62) 130.

tmr2_cont_get Gets TMR2 control register (TICkit62). 130.

tmr2_count_set Sets TMR2 count (TICkit62) . 131.

tmr2_count_get Gets TMR2 count (TICkit62) . 131.

tmr2_period_set Gets TMR2 period register (TICkit62). 131.

tmr2_period_get Gets TMR2 period register (TICkit62) 131.

ccp1_cont_set Sets CCP1 control register (TICkit62) 131.

ccp1_cont_get Gets CCP1 control register (TICkit62). 131.

ccp1_reg_set Sets CCP1 register (TICkit62). 131.

ccp1_reg_get Gets CCP1 register (TICkit62) . 131.

ssp_cont_set Sets SSP control register (TICkit62) 132.

ssp_cont_get Gets SSP control register (TICkit62) 132.

ssp_buffer_set Sets SSP Buffer (TICkit62). 132.

ssp_buffer_get Gets SSP Buffer (TICkit62) . 132.

ssp_addr_set Sets SSP Address (TICkit62) . 132.

ssp_addr_get Gets SSP Address (TICkit62). 132.

ssp_status_get Gets SSP Status (TICkit62) . 132.

6.17 Constant Symbols Defined in Libraries. 136.

7 The Console Program 139
7.1 Turning your computer into a dumb terminal. 139.

7.2 The Console Protocols (home brew TICkit I/O). 139.

8 The Debug Program 140
8.1 What exactly does the debugger do?. 140.

8.2 The Debugger's Screen Format. 140.

8.3 Debug Commands (doing what you want to do). 141.

9 The Compiler Program 145
9.1 How to invoke the compiler... 145.

9.2 The FBASIC command line. 145.

9.3 What do the error messages really mean?. 145.

Table of Contents FBASIC TICkit

viii Protean Logic

9.4 Command line Symbol Definition. 146.

9.5 The Symbol file: A neat debugging trick . 146.

9.6 Compiler Method of Setting Break and Watch Points. 146.

Appendix A: Circuits 148
A.1 Download Cable(s) . 148.

A.2 Multi-drop connection of multiple TICkits. 149.

A.3 The RC measurement Circuit . 151.

Appendix B: TICkit57 Hardware 153
B.1 FBASIC TICkit57 schematic diagram . 153.

B.2 TICkit57 Specifications . 154.

B.3 Component Placement Diagram . 154.

Appendix C: TICkit 62 Hardware 155
C.1 TICkit 62 Schematic (40 pin module). 155.

C.2 TICkit 62 Project Board Schematic . 156.

C.3 The TICkit 62 Module and IC pin diagrams . 157.

C.4 Making your own layout using the 28 pin IC. 157.

FBASIC TICkit Table of Contents

Protean Logic ix

Legal and License Information
Single User License Agreement

The FBASIC™ Language, Compiler, and associated Tools are protected under United States
copyright law. Protean Logic grants the single user license holder the right to use this software on one
or many computers, provided that not more that one person is using this software AT THE SAME
TIME. Separate licensing agreements with Protean Logic will supersede this single user license
agreement. Contact Protean Logic for information regarding possible site licensing or educational
licensing.

Limited Warranty

Protean Logic warrants the disks and materials contained in the development kit free from defects in
materials or workmanship for a period of 30 days from the date of purchase. If, in this time the disks
are found to be defective, they may be returned to Protean Logic for replacement. Protean will refund
the purchase price of complete and undamaged development kits at the customers demand if such
demand is made within 30 days from the date of purchase.

Protean Logic makes no representations or warranties as to the merchantability or fitness of this
product to a particular purpose. Products developed with the development kit should not be used in a
life support application without express written agreement with Protean. Protean makes no other
warranty, either expressed or implied.

Technical Support

Protean Logic maintains an internet web site for all customers. Software updates are available from
the Protean to all customers. Simply e-mail "support@protean-logic.com" and provide the invoice
number and date of purchase in your message. We will e-mail you a reply with an attachment of the
latest software. The URL for the Protean Logic web site is, "http: //www.protean-logic.com".

Protean Logic can be reached directly at (303) 828 9156. Protean Logic also responds to FAX
messages daily. The FAX number is (303) 828-9316.

Properties

© 1995 by Protean Logic. All rights reserved.

FBASIC and Protean Logic are trademarks owned by Protean Logic. All other trademarks contained
in this manual are the property of their respective holders.

Notices FBASIC TICkit

1 Protean Logic

Versions and Accuracy

This manual documents features for TICkit interpreters TICkit62 version C. All information
contained in this manual is believed to be accurate. However, Protean Logic disclaims any
responsibility for incorrect information contained in this manual.

Some features documented in this manual may not be completely implemented in current releases of
software or hardware. These features are scheduled to be released in the near future and are
documented now to reduce manual printing costs as these features are implemented. Where this is the
case, notations indicating the versions containing the new features are contained in the "readme.txt"
file supplied with the release disk. Review the readme.txt file prior to program design to ensure that
necessary features are implemented in the current release.

Notices FBASIC TICkit

Protean Logic 2

1 Getting Started
1.1 The Goal Here is "Instant Gratification"
In this chapter you will learn how to connect the TICkit hardware to a console computer, use the
FBASIC compiler program to compile a sample program, use the TICkit download program to copy
the compiled program into the TICkit's EEprom, and execute the program on the TICkit. To do this
you will need a TICkit circuit board, an IBM compatible computer with at least 500K of available
memory, one free serial port, and a special serial cable for downloading from the IBM computer to
the TICkit. A diagram of this cable is shown in Appendix A of this manual if you need to make
another for some reason.

Throughout this manual, the IBM computer is referred to as the "Console". Downloading refers to the
process of copying a program from the Console to the TICkit EEprom.

Debugging refers to the process of watching the TICkit execute a program. Debugging is
accomplished by running the debugging program on the console, which is connected to the TICkit via
a two wire cable, and performing special debug commands that the TICkit understands.

1.2 Overview of the process
1. Connect The download cable between a serial port on your computer and the two pin

download socket on the TICkit Module or similar connector on your custom circuit.
2. Connect power to the TICkit. If you purchased a project board, simply plug in the wall

adapter in it's socket. If you are using the module in your own prototype, apply a regulated 5
Vdc to the appropriate pins on the TICkit. +5 Vdc (vdd) connects to pin 30 of the module
and Gnd (vss) connects to pin 29 or pin 10. If you are using the 28 pin processor IC in your
own design pin 20 is +5 (vdd) and pin 8 and 19 are the ground pins.

3. Install the TICkit software by placing the supplied disk in a drive and typing: a:install or
b:install (depending on which floppy drive the disk is in).

4. Run the TICkit debugger on the console computer by changing to the directory where the
software is installed and typing: debug 1 or debug 2 or debug 3 or debug 4 (depending on
which serial port you plugged the download cable into).

5. Reset the TICkit by pressing the button on the T62-PROJ board or by removing and
re-applying power to the TICkit module. If everything is working, Some additional
information will be displayed in the dialog box on the console computer that looks
something like:
 TOKEN: E0 PC: 01FA Command:

6. Quit the debug program by pressing 'Q'.
7. Compile the example program by typing: fbasic first62
8. Download the program using the debugger. Type: debug 1 first62 (the port number may not

be one, use the same number as you used in step 4). Reset the TICkit and then press 'D' at
the command prompt on the console computer. Answer 'Y' when asked if you wish to
download.

Getting Started FBASIC TICkit

3 Protean Logic

9. Execute the downloaded program by pressing 'E' at the command prompt on the console
computer.

1.3 Step One: Connect the cables

The TICkit 62 is the current version of the TICkit. It is a small PCB module approximately the same
size as a 40 pin DIP package. Only 32 of these pins are actually used by the TICkit 62, the rest are
reserved for possible use in the future TICkit products. The TICkit 62 can be plugged into a 40 pin
DIP socket, a solderless breadboard, or into Protean's T62-PROJ project board. The idea here is to
allow projects to be built on inexpensive carrier boards and then to move the processor modules from
project to project. The download socket for the TICkit62 module is a vertical 2-pin socket located at
the bottom of the module next to the socketed EEprom. The ground pin is the lower pin but no
damage is done by reversing the polarity. The power connection is made through the DIP pins of the
module consult the pin-out diagram for connection information. The download connection is also
available through the DIP pins. If a T62-PROJ carrier board is used, simply plug the module into the
40pin DIP socket and apply power at the adapter jack on the left side of the board or solder the
supplied 9volt battery plug in the holes provided and connect a battery.

Connect the Download cable to a free serial port on the Console. The download cable connector has a
9 pin D connector for the console serial port. If your computer has only a 25 pin connector, a 9 to 25
pin adapter will work fine. Also a 25 pin female connector (like Radio Shack # 276-1548) may be
wired up according to the download circuit shown in appendix 'A' of this manual. Plug the two pin
connector of the download cable into the two pin socket labeled, "DL" on the TICkit. The "DL" socket
is not polarized in any way, so there is a possibility the download cable will be inserted incorrectly
into the TICkit. The ground pin (the wire with the markings) should be to the left or bottom. If the
cable is inserted incorrectly, no damage will occur, simply unplug and then re-plug the Download
cable with the correct polarity so the download software will connect with the TICkit.

Every time the TICkit is reset, it tests for a reasonable response to a small message that is sent out the
DL port. If there is a correct response to the message, the TICkit assumes it is connected to a Console

9vdc
connector

or
>5.6vdc
adapter

Reset Button

Prototype
Area

40pin DIP
socket for

TICkit62 or
TICkit74

Download 2-pin
Socket (Gnd on

bottom)

FBASIC TICkit Getting Started 1

Protean Logic 4

and enters the debugging mode. If there not a correct response, or there is not a correct idle state
voltage on the DL port, the TICkit will simply start executing the program that is contained in its
EEprom.

Once the power and download cables are properly connected, the console needs to establish
communication with the TICkit. On the console computer, go to the directory where the software is
located. This may be located on a floppy disk if you did not copy the files from the distribution disk
onto your hard disk drive. You can install the files to your hard disk by running the install.exe
program on the release disk (type a:install at the DOS prompt). Once the software is installed, change
the directory to where your TICkit software was placed. At the DOS prompt, type:

DEBUG62 <serial_port_number> (com2 example: DEBUG62 2)

Or, if you are using a TICkit57 use the command line that follows.

DEBUG57 <serial_port_number> (com2 example: DEBUG57 2)

All aspects of DEBUG are the same between the two programs. However, internal communication
offsets differ for each device and the proper program must be used for correct memory information to
be displayed.

The "serial_port_number" should be the number of the COM port that the download cable was
plugged into. The screen of the Console will contain a large, divided box in the lower half. The left
side of this box is called the "debug dialog" area and will display information about the debug session.
When the TICkit and the Console connect, a message indicating connection will display along with
certain information like the current token, PC, MP, and SP. Do not worry about the exact meaning of
these registers at this point. Usually the TICkit will require resetting to cause it to connect to the
Console. Reset the TICkit by either pushing the reset button in the middle left of the TICkit or by
removing then re-applying power to the TICkit.

At this point, the debugging program on the Console should display a message indicating it has
connected with the TICkit. If this is not so, verify that the cable is installed correctly. Check that the
two pin connector is correctly plugged into the TICkit. If this connector is reversed, the TICkit will
not connect. Verify that the debug program was started on the correct serial port. If, after checking all
these possibilities, the TICkit still will not connect, contact Protean via voice at (303) 828-9156, FAX
(303) 828-9316, or e-mail: support@protean-logic.com.

1.4 Step two: Compiling a program
At this point, the TICkit and the Console are successfully connected. Quit the debugger program by
pressing 'Q' or <cntrl-Z>. We will come back to using the debugger later.

Some sample programs were included with the compiler. One of these programs, called first.bas is
what we will use to demonstrate how to compile, download, and run a program. The compiler will
need the program to be contained in an ASCII text file in the current DOS directory. The compiler is
invoked simply by typing FBASIC and then the name of the source file to be compiled. In our
example, the program is in an ASCII text file called "first.bas", so type:

1 Getting Started FBASIC TICkit

5 Protean Logic

fbasic first62

The compiler reports a few lines of progress while the program is compiled and then returns to the
DOS prompt. If the program compiled successfully, two files will have been made by the compiler.
These files are "first.tkn" which is the file to download to the TICkit, and "first.sym" which is a file
for debugging purposes that tells the debugger where lines of code are and where global variables are.

When you write your own programs, simply prepare a source file using any editor. The DOS edit
command will work just fine. Then follow the procedure above to compile your program. It is normal
to have errors reported while compiling. If your program causes errors during compilation, re-edit
and compile your program until no errors are produced. Warning lines during compilation are not
technically errors, rather they inform the programmer of a possibility of incorrect program operation.
The user may choose to ignore the warnings, or re-write the program to eliminate the lines that
generated the warnings.

At this point, the tokens generated by the sample program are ready to be downloaded. Start the
debugging program as you did in step one above, but this time add the name of the sample program.
Type:

debug62 <serial_port> <name_of_file>

In this case, for example, assume the TICkit is connected to serial port COM2 and type:

debug62 2 first62

Once again, the debugger should report that the TICkit is connected (If not press the TICkit reset
button). This time, the name of the program "first" should display at the bottom of the dialog box and
the word "SYMBL" indicates that there is symbolic information available for this file.

1.5 Step three: Getting the program inside the TICkit
At this point, the Console computer is running the debugger and talking to the TICkit, but the TICkit
has not been programmed. This "programming" process is referred to as downloading. The debugger
is used to download the token file generated by the compiler to the TICkit. The TICkit will write the
tokens into it's EEprom for permanent storage (or until a different program is downloaded). The
debugger is instructed to start downloading by pressing the letter 'D' at the debugger's command
prompt. The debugger will then ask if you really want to download to the TICkit. Press 'Y' to initiate
the transfer. The debugger will read the token file, transfer the tokens to the TICkit, then verify the
transfer. One thing which we have assumed is that the debugger knows which token file to use. It
will, provided the debugger was started with a file name on the command line. If that is not the case,
use the "file" command of the debugger to specify which file to use by pressing 'F' at the debugger's
command prompt.

If all went well with the download, there will be a message indicating the file was downloaded and
verified. The PC (program counter) register will be pointing to the first token of the downloaded
program, and a command prompt will display. Now press the letter 'E' which is the debugger
command for execute. The program will run and "Hello world..." will display above the debug dialog

FBASIC TICkit 1 Getting Started

Protean Logic 6

box. Congratulations! The TICkit program placed that message there. Your first program has been
compiled, debugged, downloaded, and executed. You can reset the TICkit and press 'T' or 'S' to watch
the TICkit execute the program a source line or token at a time.

1.6 If you are having trouble
If your TICkit does not seem to be responding, or the console computer is not executing as this
manual says it should, follow the steps below to attempt to remedy the problem. If none of these
things work, contact Protean Logic at: (303) 828 9156.

1. Verify that the power and download connections are not reversed. The plugs are not
polarized, so try plugging the cables in every orientation. Press the reset switch (or remove
and repaly power) after every change.

2. Run the programs from DOS. If you are in windows, exit to DOS. Verify that no mouse
drivers or other items are using the required serial port. Disable any TSRs which might
interfere with transfer timing.

3. Run all programs from the same directory where the software was installed (\tickit). Make
sure that the DOS debug program is not being run instead of the TICkit's because of a path
search.

1 Getting Started FBASIC TICkit

7 Protean Logic

1.7 The TICkit development cycle: The standard routine

The "first" example is a very simplified version of the steps required to get a pre-written program
compiled and installed into a TICkit device. The routine for initially writing, compiling and
debugging a program is not any more difficult. The diagram above graphically illustrates the steps
involved for developing a program and what software tools are used for each step.

The very first step is setting up the development configuration. The supplied development integration
tool is called the TICkit launcher. Setting up a development configuration is an optional step, but a
very fruitful step if the project is large or difficult in any way. The chapter on the TICkit launcher
explains the specifics required to build a configuration. In general, the common commands required
to perform each step of development are entered into a special configuration file. This file acts as a
type of menu to easily select each step of the development cycle with just a few keystrokes and frees
the user from having to remember specific command line parameters.

The next step is to type in a new program or to copy an existing program which will be modified for
a new application and make initial modifications. The tool used to do this, a text editor, is not
supplied with the TICkit package, but every version of DOS has a text editor. There are also special
editors available just for program development. For the sake of discussion, this manual assumes you
will be using an MS-DOS version 5.x and 6.x program called "edit" to enter and modify programs.
Refer to your MS-DOS documentation for instructions for the text editor, or use whatever editor you

Initial Design

Assemble Electronics

Write the program

Compile the Prog.

Revise the program

Errors

Download the Prog.

Run & Test
no errors

Revise Electronics Check Prog. Logic

Electronics Errors Program Errors

Editor

Editor

Compiler

Project Finished

Debugger

Debugger

FBASIC TICkit 1 Getting Started

Protean Logic 8

are most familiar with. Most professional programmers prefer to continue to use whichever editor
they have been using in the past. This saves learning a new tool. Some people even use word
processors to make their programs and simply store the files as ASCII text files which are readable by
the compiler.

After an ASCII text file is prepared using an editor or word processor, the next step is to compile the
program. The supplied program called "fbasic.exe" reads the ASCII text file and generates two
additional files as output. One file is the machine representation of the program called a token file,
and the other file is a collection of information used by the debugger called a symbol file. The
compilation step usually produces AN ERROR LIST. As annoying as a list of errors is, it really is a
great time saver. The compiler can detect many types of errors as it is generating the token file.
Because the entire file is scanned, most errors in a program can be detected even before the program
ever runs. The fact that errors are common is the reason for the smaller loop in the development
diagram. After the compiler reports errors, the programmer runs the editor again to correct the
reported problems, then re-runs the compiler. This small sequence is repeated until the compiler
reports no errors.

The next phase of the development cycle is the debug cycle. The tool used here is the supplied
"debug.exe" program (actually DEBUG62.exe or DEBUG74.exe). This program is run and the token
and symbol file for the program are loaded into the debug program. Then the tokens are downloaded
into the TICkit hardware using the download command of the debugger. At this point any of many
types of debugging techniques are used to verify that the program actually does do what it is intended
to do. The program can be executed and run at full speed, or the programmer can interactively step
through each line of the program and watch the results a line of the program at a time. Watching the
program execute a line at a time is called "source level debugging" and is a very effective way for
finding bugs in programs. The debugging phase of the development cycle is used to find "run-time"
or "logical" errors in a program where as the compiler can only catch "syntactical" or "grammatical"
errors. Usually there will be at least a few errors of logic in a program. This fact generates the larger
loop in the development diagram. When an error in logic is detected while debugging the program,
the programmer must go back to the editing stage of the development cycle to edit the program source
code, re-compile the program, re-download the program, and test again until no errors of logic
remain. At this point the program is complete. This scenario assumes that any circuitry created for
the task works properly also. Often changes in the user's hardware interface will require changes in
the program which requires re-editing, re-compiling, downloading, and debugging once again.

1.8 What next?
The following chapter talks about the TICkit launcher. This program is the integrated interface for
programming the TICkit. Using the launcher saves lots of typing while developing a program. It
allows the various command lines, like the ones we just used to compile and download the sample
program, to be entered into a special configuration file. Then the compiling, downloading, editing,
etc. for a program can be started with just a few keystrokes instead of typing a whole command line
each time.

1 Getting Started FBASIC TICkit

9 Protean Logic

After the Launcher is explained, the next chapter will take a closer look at the sample program. This
time the emphasis is on programming, not just using the tools to get the program into the TICkit. In
this chapter, the fundamentals of the FBASIC language are discussed. After this chapter, many
programmers will be ready to get to their project. The remainder of the manual can be used as a
reference.

The next three chapters deal with the programming language in more detail. Chapter 4 talks about
expressions, types, and other issues that more complex FBASIC programs can use to produce better
programs. Some philosophy of why FBASIC is the way it is appears here. Chapter 5 talks about the
Keywords used in FBASIC. Listing keywords in alphabetical order enables this chapter to be used as
a reference. Chapter 6 contains a list of functions. This chapter is organized by what the functions do.
Most programmers will want to spend some time reviewing this list to see what is available and what
sort of arguments the functions need.

The final chapters talk about the Debugger, the Compiler and the Console program. The Console
program may be used instead of the debugger once a program is operational. The Console program
uses the full screen to display information from a TICkit. In this case, the console computer becomes
an input/output device for the TICkit. Review these chapters to find more advanced techniques to
employ with these tools. The Debugger instructions will be especially useful.

Be sure and become aquainted with the Protean Web Site at: //www.csn.net/Protean. This site
contains many applications notes, product update information and links to other useful data sources.
Also, spend some time to explore the sample programs on the release disk. Information about the
TICkit changes quickly and often there are new libraries and other resources which have yet to be
documented which are contained on the release disk.

FBASIC TICkit 1 Getting Started

Protean Logic 10

2 The TICkit Launcher
2.1 What is a launcher? How will it help when programing?
A launcher is simply a type of menu program. Because the use of the editor, compiler, and
downloader is cyclical in nature, a convenient way to repeatedly execute each of these tools on the
required files is a real time saver. The launcher does just this.

Entering the command line for each source file to be edited in a program, the compile command, and
the debug command into the launcher allows the programmer to repeat any of these commands with a
few key strokes.

The TICkit launcher will hold up to ten command lines. The list of command lines is displayed in the
center of the screen plus three other options used to load different configurations, edit the current
configuration, make a new configuration based on the current one, and exit the launch program.

The launcher is started by typing:

tickit [<configuration_file>]

The configuration_file is optional. Each list of files is referred to as a launch configuration.
Commonly, there is a separate configuration for each program under development. These
configurations can be named to correspond with the name of the primary source file. For example,
with the program "first.bas", a configuration named "first.tic" could contain the following three
command lines:

0 edit first.bas
1 fbasic first
2 debug62 2 first

These three commands would be repeated frequently if the program "first" were complex and required
a lot of debugging and compiling during its development. The edit of libraries and other source files
could also be added to this list. The process of starting the launcher for this configuration would be to
type:

tickit first

Each one of the commands on the list is given a number. Pressing the number while the launch menu
is displayed will cause that command to be executed. The commands can also be selected by using the
arrow keys to highlight the desired command and pressing the <enter> key.

Some programs, like the FBASIC compiler, produce relevant information immediately before they
terminate. (The error list). For this reason, the launcher can be made to wait for a key press after each
command on the list. This allows the programmer to examine the data on the screen before the launch
menu is re-displayed.

2 The TICkit Launcher FBASIC TICkit

11 Protean Logic

2.2 How to configure the TICkit launcher for a program.
Essentially, every program requires a separate launcher configuration. A new configuration is created
by starting the launcher with an existing configuration, or the default configuration if no other
configurations exist in the working directory, and modifying it to fit the new program. The new
configuration is given a new name and is saved during the edit process.

To modify a configuration, simply select the Configure Launcher (C) option on the launch menu. A
box with the list of command lines will display in the upper left of the launch screen. Use the arrow
keys to move to the lines to change and modify each line as required. Change the configuration name
to be the name of the new configuration. Press the <esc> button to end the configuration edit session.
If a file exists with the same name as the configuration name given, the launcher will ask if it is OK
to overwrite it. You may press 'Y' to overwrite the old file, 'N' to re-edit configuration information, or
'C' to cancel the edit session and return to the main launch menu without saving any changes made to
the configuration.

Often a configuration will be identical to ones already created. In this case call up the existing
configuration using the (L) option then use the "New Configuration" (N) option to change only the
name of the program in the configuration.

The user may also select a different configuration while remaining in the launcher by selecting the
Load Configuration (L) option on the launch menu. The launcher will ask for a name of the
configuration to load. If the file name given exists, the configuration will be loaded. Only the root
name need be given. The ".tic" suffix will be added to the configuration name automatically. If the
specified configuration file does not exist, a pick list of existing configurations will be displayed to
choose from. Arrow up or down to select the configuration name you wish to load. Press enter to load
the highlighted configuration. The user may wish to press the <tab> key to clear the configuration
name when loading a configuration. This has the effect of calling up the pick list immediately. If the
user presses the <esc> key while the load name is being entered, the old configuration is continued
and the user is returned to the launch menu.

To exit the launcher, select the eXit launcher (X) command.

FBASIC TICkit 2 The TICkit Launcher

Protean Logic 12

3 FBASIC Anatomy
3.1 Dissecting the sample program, "first.bas"

DEF tic62_c
LIB fbasic.lib

GLOBAL word eeprom_pntr
GLOBAL byte each_byte

FUNCTION none main
BEGIN
 rs_param _set(debug_pin)
 =(eeprom_pntr, "Hello World...")
 =(each_byte, ee_read(eeprom_pntr))
 WHILE <>(each_byte, 0b)
 con_out_char (each_byte)
 ++ (eeprom_pntr)
 =(each_byte, ee_read (eeprom_pntr))
 LOOP

 REP
 LOOP
ENDFUN

The sample program "first.bas", which is included in the Development Kit, is shown above. This
program places the string "Hello World..." on to the console screen. This program is typical of a
program written in FBASIC. LIBRARIES are usually referenced at the beginning of a program, the
GLOBAL variables are declared and DEFINITIONS are listed. Finally the program ends with the
FUNCTION blocks that make up the procedural part of the program.

This example only has one FUNCTION, but usually there will be many functions in a program. The
order of FUNCTIONs is important in FBASIC. FUNCTION names, like all symbols, must be defined
or declared before they are referenced. This means that a FUNCTION block for a function name must
be placed before any code which calls that function.

The beginning execution point for all FBASIC programs is the FUNCTION main. The FUNCTION
main will almost always be the last function block in a program because it will reference all the other
functions in a program, if any others exist. The FUNCTION main must have no parameters and no
return value. Another interesting point illustrated in the example, is that there is really nothing for
the TICkit to do when "main" finishes. So, it is a good idea to simply place the TICkit in an infinite
loop instead of allowing the TICkit to execute random code when main finishes.

3 FBASIC Anatomy FBASIC TICkit

13 Protean Logic

3.2 A word about libraries
The first two lines of the example are a DEFINE directive and a reference to the library, "fbasic.lib".
These two lines work together to inform the compiler about the device that the program will
eventually operate within. The define line informs the fbasic.lib which version of TICkit hardware it
is dealing with. The fbasic.lib file contains special instructions that inform the compiler about
keywords, available variable sizes, and what built-in hardware functions are available in the TICkit.
Virtually every FBASIC program will reference this library. This library, and its component library
"token.lib" are good sources of information about the standard library in the TICkit. By editing the
file "token.lib", the calling definitions for internal routines can be examined along with any notes or
special definitions for the routines. This information is as accurate as possible because this is what the
compiler actually uses to make the program. A little later in this chapter, our example will be
modified to use another library that comes with the development kit that makes the program even
simpler.

The next few lines are GLOBAL lines. These statements define symbolic names and sizes to variable
storage areas. In our example, a 16 bit word is associated with the symbolic name "eeprom_pntr" and
an 8 bit word is associated with the symbolic name "each_byte". The programmer never needs to
know the physical location of these variables since the compiler will always know where they are on
the basis of their symbolic names.

The next lines create a procedure block for the symbol "main". As mentioned before, the FUNCTION
main is the starting execution point for any FBASIC program. Every FUNCTION in FBASIC must be
given a name and a type for any value that it returns. "Main" will never return a value (it has no place
to go), so it is defined as type "none". The FUNCTION "main" never has any parameters either, but if
it did have parameters or local values, they would be defined for the duration of the FUNCTION
block and would appear between the FUNCTION and BEGIN statements.

BEGIN is the statement which marks the beginning of code generation. All the statements between a
BEGIN and an ENDFUN are code generating statements. In our example, two assignments, two
loops, some math, some EEprom functions, and a console output function are referenced.

FBASIC has expression evaluation, but it has no "operators". This means that all arithmetic is
performed using function calls. Even assignment, (=) is accomplished using functions. This
"limitation" makes the language very simple, but possibly a bit unfamiliar. To reference a function
simply use the function's name followed by a left parenthesis "(". This tells the compiler that the
program is to execute the code contained in the procedure block or operation which has that name. If
any parameters are to be used, they would be placed after the left parenthesis, but before the matching
right parenthesis ")". Parameters in function calls can be variable references, parameter references,
constants, or other functions with return values.

In our example, the first assignment line will assign a value to the variable "eeprom_pntr". The value
it assigns is a 16 bit pointer to the string "Hello World...". The string "Hello World" appears to the
compiler as a constant. This may seem mystical but it really is quite simple. When the compiler sees a
quote (") it understands that a string constant is being defined. All characters that appear in the string

FBASIC TICkit 3 FBASIC Anatomy

Protean Logic 14

will be placed at the end of the program code and a pointer to beginning of that EEprom location will
be used as the value of the constant. Our example places the EEprom address of the place where
"Hello World..." is stored into the variable "eeprom_pntr".

The next line reads a byte from the EEprom at the location given by the variable "eeprom_pntr" and
places that byte into the variable "each_byte". The function "ee_read", which is contained in the
standard library, is what actually does this operation. The byte that is returned from that function is
placed in "each_byte". Assignment operators in the standard library copy the contents of the second
variable (ee_read) into the memory area of the first variable (each_byte).

The next line is a WHILE statement. This statement marks the beginning of a structured loop in
FBASIC. An expression follows that tests for a looping condition. The body of the loop will be
executed only while the expression evaluates to a non-zero (true) value. The first LOOP statement
ends this WHILE block. The expression for this WHILE statement tests the variable "each_byte"
against the byte constant 0. If they are not equal, the "<>" function returns a value of 255 (all 8 bits
are one). If "each_byte" is equal to 0, the "<>" function returns a 0 indicating that the comparison
failed. All relational functions in the standard library return either a 0 or 255.

The body of the loop contains three function calls. The first call is to a function which outputs one
byte to the Console. This function will cause the contents of the variable "each_byte" to appear as an
ASCII character on the Console display. The second function call is a 16 bit increment function. This
function returns no value, but increments the argument by one. The third function in the loop is like
the function which preceded the loop. It simply reads a byte from the EEprom at the specified address
and places it in the variable "each_byte". These three statements will be executed until a 0 is read
from the EEprom. The zero will be there because FBASIC always terminates string constants with a
single 0 byte.

The last two statements form an infinite loop. The REP statement starts a structured looping block
and the LOOP statement ends the block. Since both the top and bottom of the loop are unconditional,
the TICkit will simply loop in this location until it is reset.

All loops in FBASIC have one of two starting statements and one of two ending statements. Loops
can be started with either a REPEAT or a WHILE statement. The WHILE statement establish a
condition for entering and continuing the loop. REPEAT causes repetition with no condition. Loops
can be ended with either a LOOP or an UNTIL statement. The UNTIL statement establishes an exit
condition for exiting the loop. The LOOP statement will never cause an exit, but simply causes the
body of the loop to repeat. The body of the loop must use some other means, like a WHILE or a
STOP, to exit. Any combination of beginning and ending statements forms a valid structured loop in
FBASIC.

Two other statements are associated with loops in FBASIC. The STOP statement will cause the loop
to be exited, while the SKIP statement will cause execution to jump to the LOOP statement.

3 FBASIC Anatomy FBASIC TICkit

15 Protean Logic

3.3 A more elegant "first.bas"
DEF tic62_c ; version 62A of TICkit
LIB fbasic.lib

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 con_string("Hello World...")

 REP
 LOOP
ENDFUN

This version of "first.bas" uses a library which has a pre-written routine for doing string output to the
console. The function "con_string" is contained in the library "constrin.lib". This general purpose
routine uses a pointer into EEprom as the pointer to the beginning of a ASCII string. The contents of
the string will be output to the Console until an 0 character is encountered in the EEprom. The
"con_string" library file contains:

; Generic function to output a string of characters from
; EEprom to the Console

LIB fbasic.lib ; This will be ignored if the root
; program referenced fbasic.lib

FUNCTION none con_string
 PARAM word pointer

 LOCAL byte each_byte
 LOCAL word temp_pntr
BEGIN
 =(temp_pntr, pointer)
 =(each_byte, ee_read(pointer))
 WHILE <>(each_byte, 0b)
 con_out_char(each_byte)
 ++(temp_pntr)
 =(each_byte, ee_read(temp_pntr))
 LOOP
ENDFUN

This Library function is quite similar to the original "first.bas" except that it uses local values and a
parameter to make it a more general purpose function. The PARAMETER statement informs the
compiler that a symbol of the given type or size is going to be coming from the calling reference. The
statements in the function can have access to this data by referencing the parameter name. The
LOCAL statements are just like GLOBAL variable definitions except that they exist only to the
statements contained in the function. This saves on memory space and also prevents accidental

FBASIC TICkit 3 FBASIC Anatomy

Protean Logic 16

symbol name conflicts in programs that use this library. A temporary copy of the pointer passed to the
"con_string" function is made so that the calling value is not modified.

The lines at the beginning of the file that begin with ";" are comments. Any part of a line that follows
a ";" is treated as a comment and is ignored by the compiler. Therefore a ";" as the first character of a
line is equivalent to the REMARK statement.

Examination of other libraries contained in the FBASIC Development Kit will illustrate other
programming concepts for the FBASIC language.

3.4 FBASIC line syntax (labels, remarks, conditionals)
FBASIC is a line oriented language. This means that there is really only one statement per line. There
are quite a few additional things a programmer can do with a line though, besides just putting a
statement on it. For example, a line may be blank, or it may have a comment, or it may have a label,
or a conditional compilation directive, or it may even be extended onto the next line. The sample
program above used blank lines to keep things a bit easier to read, and the library routine above used
the ';' on a few lines to place text messages to the programmer for future reference. The code sample
below shows a few more things that can be done:

; Code fragment to illustrate line syntax

:again1 con_string("hello ~
 ~again...\x0d") ; repeat this

IFDEF exit_capable IF ==(con_in_char(0), 23b)
IFDEF exit_capable GOTO done1
IFDEF exit_capable ENDIF

GOTO again1

:done1

This code fragment does not exemplify good programming practice, but it does illustrate some of the
trickier things that can be done with lines in FBASIC. The first line is simply a comment line to
explain what the code does. The next line uses the ":" to associate the label "again1" with this line in
the program. All labels in FBASIC are local, so only other lines in the same function can reference
"again1". This same line uses con_string to output a string of characters to the console. The literal
string is a bit peculiar looking, however. The "~" character is used to extend a line onto a following
line. Therefore, this string is actually, "hello again...\x0d". Using line extension can make a program
easier to read when lines get long. Another element of this line that is a bit odd is the "\x0d" in the
string. The '\' character is an escape character. The escape character is used whenever something
unusual is to be done with the character, or characters, that follow. In this case the '\x' informs the
compiler to insert a byte with the value of the following two hexadecimal digits. In this example, a
value of 0d is used which is an ASCII return character. The following table summarizes the escape
characters and their meanings:

3 FBASIC Anatomy FBASIC TICkit

17 Protean Logic

Escape seq. Sequence Meaning
\R ASCII return character
\L ASCII line feed character
\\ \ character (no escape)
\" " character (doesn't terminate literal)
\' ' character (doesn't terminate literal)
\~ ~ character (doesn't extend line)
\xnn character of hexadecimal value nn (2digits)
\dnnn character of decimal value nnn (3digits)

A few lines further into this code fragment are three lines with IFDEF directives. IFDEF is a compiler
directive. The lines that follow the IFDEF <symbol_name> will only be compiled if the
<symbol_name> has been defined. In our example, the symbol "exit_capable" is tested to see if it has
been defined previously in the program. If it has, the three lines comprising the IF statement will be
included in the compile. Otherwise, the three lines are ignored. The IFDEF directive is used by the
fbasic.lib file to include only the appropriate version of the token.lib. This is how DEF tickit_2 at the
beginning of the program causes the proper code to be generated for the 2.x version of the TICkit
interpreter.

3.5 Constants, constants, and more constants
The rules regarding constants are often hidden or overlooked aspects of programming languages.
FBASIC allows for different sizes of constants, different radix of constants, and some special types of
word constants which are actually pointers into EEprom storage. Why all the different types? By
expressing constants in the proper size and in the proper way, the program executes faster and more
efficiently. At the same time, the programmer can easily understand what the constants mean. For
example, the decimal number 128 may not seem structurally significant, but the binary representation
of that number, 10000000, clearly indicates that the 7th bit is set high. Constants are not too difficult
to learn provided that their basic structure is understood.

For numeric constants, the structure always starts with a numeral. Often a leading zero is used to
ensure that any non-numeric elements of the constant (like radix or hexadecimal characters) do not
fool the compiler. An optional radix indicator may follow the leading zero in the second character,
then one or more digits of the constant, and ends with an optional size indicator. For example,
0x0fa8L is a hexadecimal constant as indicated by the 'x', and it is a LONG size as indicated by the
trailing 'L'.

Radix indicators are: Y=binary, D=decimal, X=hexadecimal.

Size indicators are: B=byte, W=word, L=long.

FBASIC TICkit 3 FBASIC Anatomy

Protean Logic 18

; Examples of constants

=(var1, 0y00010011b) ; the y makes it binary (base 2)
; the b makes it a byte

=(var2, 0xff04w) ; the x makes it hexadecimal (base 16)
; the w makes it a word

=(var3, 0d12345678l) ; the d makes it decimal (base 10)
; the l makes it a long

In addition to the numeric constants, there are also ASCII constants. The ASCII constants allow for
strings of values. Therefore, they are indicated with quotes. The "" is used to indicate a word constant
which points into EEprom memory where the string of ASCII constants will be stored. The ' ' is used
to indicate a byte constant or multiple byte constants in an INITIAL statement. Usually only the first
byte of a ' ' string is used as the byte value of the constant, but the INITIAL statement is able to use all
of the byte constants and place them in allocations that can use more than one byte value. An example
of these string constants is: "hello world", used in the first.bas program. The byte constant 'hello
world', would actually evaluate to 104, which is the ASCII code for a lower case H character. Unless
in an INITIAL statement the ' ' will usually only have one character in them. For example:

con_out_char('H') ; an alphanumic value byte constant

3.6 Using DEFINES and Constant Operators
Larger programs often have many references to the same constants. To prevent typing errors and to
provide for easy modification of the constants involved, symbols are used in place of numbers
throughout the program. This is accomplished using the DEFINE directive. The example below
shows how the constant, "temp_offset", is used in place of the number 103b. First the symbol is
defined, then later in the program, the symbol is used instead of the number. Imagine a program that
has 45 lines of code that refer to temp_offset.

DEF temp_offset 103b
.
.
.

IF >(in_val, temp_offset)
 con_out(+(temp_offset, in_val))
ELSE
 con_string("Reading out of range")
ENDIF

Now imagine that while debugging you decide the temperature offset of your device needs to be
changed from 103 to 121. A program that used the DEFINE, requires only on change. A program
that used the number in every reference would need all 45 lines changed, assuming you could find
every occurance.

3 FBASIC Anatomy FBASIC TICkit

19 Protean Logic

Another useful tool to use with symbolic constants is the '|' compile time operator. The "vertical bar"
operator performs a bit-wire OR of the constants adjacent to it. The example below is very common in
TICkit programs that us RS232. It uses DEFINED constants with the '|' operator to build up the
format, baud rate, and pin number used in the rs_param_set() function. This notation is much clearer
than a binary number.

rs_param_set(rs_invert | rs_4800 | pin_d5)

instead of:

rs_param_set(0y11000101b)

3.7 String constants and implicit allocation
Very commonly, a program needs to output a sequence of alphanumeric bytes for display. These
sequences are called strings. FBASIC supports this common requirement by utilizing the double
quotes " " to generate a special string constant. The string constant performs two distinct operations.
First, it causes the compiler to place the contents of the quoted string into the EEprom. Second, the "
" string produces a word constant that is the EEprom address of the first character of the string. This
has the net effect of both allocating and initializing memory as well as producing a way to keep track
of the constant.

The string information is placed in the EEPROM immediately following the program tokens and a \0
(byte of value zero) is appended to the end of each string. The appended \0 at the end of the " " string
can be used to determine the end of the string and is a common convention refered to as "null
termination".

con_string("Have a nice day\r\l") ; a word constant which
; is a pointer into EEprom

; It points to the beginning of the string,
; where the compiler placed it in EEprom.

3.8 Allocation Constants and Field Names
The last type of constants have to do with EEprom allocations. These constants provide a means of
working with EEprom storage on a record or array basis. Some of these issues may not be clear
immediately, unless you are familiar with upper level languages which have structure capability like
C or Pascal. But these concepts are not difficult, just keep in mind that these values are not the
storage, but simply word pointers to the storage and can be manipulated like any other word size
number. Look in the Keyword section of the manual under ALLOCATE, RECORD, FIELD, and
INITIAL for more information.

First, let's look at the structure of a FIELD name. Fields are the part of a record that actually hold
information. Records can be thought of as a way to collectively refer to more than one data value.
FIELDs usually hold simple bytes, words, or longs, but they can also refer to previously defined
RECORDs. This creates a tree system. Not only can a FIELD refer to single data items, it can also

FBASIC TICkit 3 FBASIC Anatomy

Protean Logic 20

refer to more than one. So, by using a "count", an array of data items can be referred to in a FIELD.
For example:

RECORD product
 FIELD byte prod_name[25]
 FIELD word prod_code
ENDREC

RECORD demo
 FIELD long demo_no
 FIELD word demo_time
 FIELD byte name[30]
 FIELD product demo_prod
ENDREC

ALLOCATE demo demos[50]

INITIAL prod_code@demo_prod@demos[0] 1001
INITIAL prod_name@demo_prod@demos[0] 'TICkit Assemblies'

Don't be concerned if this all seems a little foreign right now. Remember, we are concerned with
understanding constants at this point. All the record and allocation stuff can come a bit later. From
our example though, there are six FIELD lines. The first FIELD line and the fifth FIELD line all use
a "count" to indicate that the field contains 25 and 30 bytes respectively.

The sixth FIELD line shows how a FIELD in one record can refer to a previously defined record.:
FIELD product demo_prod

The ALLOCATE line is what actually reserves the space in the EEprom. In this case it will reserve
enough room to hold all the fields for the record demo. The allocation is named "demos". Whenever
we refer to "demos" in the program, we are actually referring to the EEprom address of the first 8 bit
location of this allocation. Therefore, simply using the word "demos" in an expression is using a
constant. The more information that is attached to demos, for example the demos[0], the further the
constant is pointing into the allocation. Records are also constants. Records named in expressions
refer to offsets within an allocation. Also, fields are simply offsets from the beginning to the record in
which they appear. The '@' is used to add up all these offsets at compile to refer to individual fields
within an allocation. For Allocations or Records where more than a single count of an item exists, a
numeric constant can be used with a @ to get to the correct individual storage element. All this works
out nicely as a way to refer to EEprom storage symbolically.In the above structure example, the
following line outputs the product name to the console:

con_string(prod_name@demo_prod@demos[0])

There is one more issue related to the FIELD, RECORD, ALLOCATION scheme, however.
Occasionally you may want to know what the size of a storage element is. By using just the record
name in an expression, the size of the storage element is used in the expression. This constant is very
useful to calculate the location of a particular count storage element using variables at run time.

3 FBASIC Anatomy FBASIC TICkit

21 Protean Logic

The '!' is often used in this sort of calculation. The '!' operator lets the compiler know that you
intended to use a partial field name. Without the '!' operator, the compiler would report an error if a
partial field name is used in an expression. This basically boils down to an array offset. Therefore, in
the following example, a 16 bit corrected value is returned from an 8 bit input that represents an A/D
reading.

RECORD each_entry
 FIELD word adj_value
ENDREC

ALLOC each_entry A_D_correct 256

FUNCTION word A_D_adjust
 PARAMETER byte ad_inval
BEGIN
 =(exit_value , ee_read_word(~
 ~ + (!a_d_correct, *(ad_inval, each_entry))))
ENDFUN

The assignment statement uses a standard array calculation of an offset plus a size times the array
index to come up with the EEprom address of the correct word for the given 8 bit a_d_value.

Ok, this last section got pretty deep. Just remember that there are constants for both the initial offset
of an EEprom allocation as well as the size of an Allocation element. When you start using the
EEprom as a storage medium, these types of constants will come in quite handy. They will also
eliminate the need to remember a bunch of numbers. Once you get a good handle on the ALLOCATE
statements, take a look at the SEQUENCE statement. It is just like ALLOCATE but does not use
EEprom space.

3.9 Variables, Global vs Local and precious RAM space
The discussion above dealt with constants, but the real issue in programing is utilizing variable space
efficiently. Computers of all sizes have limited resources. Small computers and controllers, like the
ones that implement FBASIC, have particularly harsh limitations in terms of RAM memory. The
TICkit 57 has only 48 bytes of RAM total while the TICkit 62 has 96 bytes of RAM. The current
FBASIC TICkit token scheme limits the maximum available RAM in any processor to 128 bytes.
RAM is used to store variable's information which changes quickly, and stack-based data such as
program flow information.

Because this type of memory is so scarce, FBASIC has provided many features to optimize its use and
organization. The issues of data size have already been discussed in reference to constants, but using
only as much space as is required for any given variable is probably more important in the discussion
of RAM than constants. Besides choosing the smallest size of variable, another option exists for
limiting the scope of a variable.

Variable scope refers to how long, or for what section of a program, space is allocated to a variable.
GLOBAL variables have global scope. This means that space is allocated to the variable name for the

FBASIC TICkit 3 FBASIC Anatomy

Protean Logic 22

entire time the program is executing. LOCAL variables have local scope sometimes called function
scope. LOCAL variables only have space allocated during the short period that the program is
executing in the function the variable was defined within.

LOCAL variables offer several advantages. First, they allow different functions to share the same
RAM space for variables. Second, they limit where a variable name can be referenced. This provides
the compiler with an ability to check the programmer's work. If a variable is defined only within a
function, any reference to that variable outside of the function can be assumed to be an error.

GLOBAL variables can be used by any function and actually operate a little bit faster than LOCAL
variables. The main drawback to GLOBALs, however, is that they occupy scarce RAM space even if
the information is not being used, or is no longer needed.

Now, there is an obvious question that arises out of this discussion. What happens when the memory
space is exceeded? If there are too many GLOBALs, the compiler will report an error. However, the
more common situation is that the memory is exceeded dynamically while the program is running.
This occurs because the compiler can not forsee how the local variables will be used and when they
will allocate memory. As the program is running and executing functions and nested functions, the
local memory stack may grow to the point that it starts overwriting the GLOBAL area. This will
usually result in strange program results.

If a program is using a lot of LOCAL variables and there is a possibility of a stack overflow, the
programmer should execute the program with the debugger connected in monitor mode. The
debugger continuously monitors both the stack pointer and memory pointer and alerts the user if an
overflow occurs. THIS IS A TRICKY SOURCE OF UNEXPLAINABLE BUGS, and is a good thing
to check if a program mysteriously stops functioning properly.

The TICkit62 implements a stack overflow vector call. This was unavailable in the TICkit57.
Basically, a vector call is simply a function that gets called by something other than the lines of your
program. In the case of the stack overflow vector, the function called "stack_overflow" will be
executed whenever the interpreter runs out of memory. You can not return from this function, so this
function is typically used either to inform the programmer of something which needs attention, or is
designed in a final product to perform a controlled shutdown. For example, the maker of an elevator
controller assumes the stack will never overflow, but if it does due to some unforseen circumstance,
he may program the elevator to apply brakes, turn off motors, and allert the security system.

3.10 Variable Arrays and Indirection
Most of the time, variables are simply named locations in the computers memory used for storing
discrete information. Sometime, though, arrays are used to allow run-time distinction between
variables. When a variable or data item is refered to by name it is called a direct reference. There are
times when a generic piece of a program is to operate on data items which are to be determined by the
execution of the program not just the position in a program. In this case, we need a way to change the
reference to data under program control. This is most commonly accomplished using one direct
variable to "point" to another data element. This reference is refered to as indirect. FBASIC allows

3 FBASIC Anatomy FBASIC TICkit

23 Protean Logic

explicit pointers with ALLOCATIONs but not with variables. Variable indirection can only be
accomplished implicitly with Arrays. Array variables look just like any other variables except that
they use the "[]" characters to indicate an array index. This index can be a constant or another byte
size, variable expression. The "[]" are also used in the array definition like a GLOBAL or LOCAL
statement to indicate how many elements will be in the array of that name. Arrays can be viewed as a
finite number of similar sized storage elements lined up in a row in memory. The entire row is
referred to by the name of the array, and the individual elements are refered to by a combination of
the name of the array and a number index that indicates which element, from the beginning of the
array, to use. An index starts at 0 for the first element and continues up to the size of the array less
one.

There are actually two types of arrays in FBASIC. There are variable arrays and allocation arrays.
Both allow indirect reference to memory, but the variable arrays are used to access the internal RAM
of the processor and are very fast. The allocation arrays are used to conveniently calculate offsets in
EEprom or some other off-processor memory resource. These array elements have to be de-referenced
(read or writen) explicitly with read and write functions and are typically a lot slower to access than
variable arrays.

Arrays are used most commonly to refer to elements that are handled the same for one purpose, but
differently for another. For example, we might have a routine that manipulates dates and times that
are read from a clock device. In this case, we will want to read all the clock information in at once so
there is no minute, second, or hour roll-over between consecutive reads from the device. A single
routine reads 16 bytes of information in from the clock IC into an array of values and treats all of the
bytes the same. The display routine is only concerned with certain array elements and treats each
element differently. The example below demonstrates this:

; program fragment to illustrate the use of arrays

GLOBAL byte read_vals[16] ; define 16 element array of
; byte values

FUNC none read_ic ; reads all 16 bytes from the
; device

 LOCAL byte val_numb 0b
BEGIN
 read_ic_init() ; gets the IC ready to xmit all regs
 REP
 =(read_vals[val_numb], read_ic_byte())

; the above line assumes that a function
; called read_ic_byte will return the
; next consecutive register of the clock
; IC internal memory

 ++(val_numb)
 UNTIL == (val_numb, 16b)
ENDFUN

FBASIC TICkit 3 FBASIC Anatomy

Protean Logic 24

FUNC none display_time
BEGIN
 lcd _string("The time is: ")
 lcd_write_num(read_vals[5]) ; 5th element is hours
 lcd_send(':')
 lcd_write_num(read_vals[6]) ; 6th element is mins
ENDFUN

3.11 Functions, parameters, and exit value
The discussion of variables above suggests that functions have some special significance besides just
being subroutines. This is exactly the case in FBASIC. Functions are used extensively in expression
evaluation and device driver creation. Functions are just small sections of instructions which act like
mini-programs. They can have their own memory variables, their own compile defines, and some
special names for input and output.

Functions have some very special local values called parameters and exit_value. These local values
are used to get information into the function from the rest of the program and to return values back to
the rest of the program.

The exit_value is used as the default method of returning a single value to the rest of the program. It
is very common for a section of a program to need to return back one result. This is so common that
FBASIC has dedicated a symbol named "exit_value" as a pre-defined local symbol in every function
which is declared to return a value. For each function, exit_value will be of the type and size that the
function was declared to be and can be assigned and manipulated just like any other local variable.
When an EXIT or ENDFUN is encountered, the data contained in the exit_value is sent back to the
calling program as the value of the function.

Parameters are the opposite of exit_value, but can be used to return information also. Parameters
appear as local variables, but are really just pointers to variables in the calling program. This gives
the function the ability to indirectly refer to data the calling program has for varying situations. The
function can read and manipulate pointers. Keep in mind that any change to a parameter in a function
will be reflected in the corresponding variable of the calling function or program. It is usually good
programming practice to avoid modifying parameters.

The following simple example illustrates how an addition function can be made:

FUNC word plus
 PARAMETER word val_1
 PARAMETER word val_2
BEGIN
 =(exit_value, +(val_1, val_2))
ENDFUN

An example of the use of the plus function as we defined it above would be:

=(sum_val plus(val_1, val_2))

3 FBASIC Anatomy FBASIC TICkit

25 Protean Logic

This returns with the word length sum of val_1 and val_2 and assigns that value

to the variable sum_val of word length that must have already been defined as a global or local before
using it in the call to the plus function.

This is sort of a trivial example, as a '+' is used to implement the 'plus' function. A more likely case
would be a keyboard input routine, which might return the ASCII value from a routine that scans
keyboard hardware.

Just to make this discussion relevant, the following code sample comes from the file "ltc1298.lib" and
shows how a library can be used to make a generic driver for an IC.

3.12 A device driver library for the LTC1298 (12bit A/D)
; Functions to control A/D
; These functions rely on three defines to work properly
; cs = Chip Select pin 'Must have a separate line '
; clk = Clock control pin 'Can share a data line '
; data = data pin 'Can share a data line i.e. an LCD'

; Routine to read a data from an LTC1298 or LTC1288 A/D chip

FBASIC TICkit 3 FBASIC Anatomy

Protean Logic 26

FUNC word read_ltc1298
 PARAM byte config ; This value indicates mode and channel
 ; for the A/D chip.
 ; bit 7 = mode (0=single end,
 1=differential)
 ; bit 1-6 = channel select
 ; bit 0 = polarity for differential or
 ; lsb channel select
 LOCAL byte count 0b
BEGIN
 pin_low (ltc_clk)
 pin_low(ltc_cs)
 pin_high (ltc_data) ; start bit
 pulse_out_high (ltc_clk, 10w)

 IF b_and(config, 0y10000000b) ; differential conversion?
 pin_low(ltc_data)
 ELSE
 pin_high(ltc_data)
 ENDIF

 pulse_out_high(ltc_clk, 10w)
 IF b_and(config, 1b) ; select channel or polarity
 pin_high(ltc_data)
 ELSE
 pin_low(ltc_data)
 ENDIF

 pulse_out_high(ltc_clk, 10w)
 pin_high(ltc_data) ; use msb first format
 pin_high(ltc_clk) ; clock in the msbf bit
 =(count, pin_in (ltc_data)) ; make data line an input
 pin_low(ltc_clk) ; return clock to low state

 =(count, 0b)
 =(exit_value, 0w) ; get data loop ready
 REP
 pulse_out_high(ltc_clk, 10w) ; clock for next bit
 = (exit_value , <<(exit_value)); shift exit to left
 IF pin_in(ltc_data)
 ++(exit_value)
 ENDIF

 ++ (count)
 UNTIL == (count, 12b)

 pin_high(ltc_cs)
ENDFUN

3 FBASIC Anatomy FBASIC TICkit

27 Protean Logic

The example above is a bit lengthy, but is a working example of a device driver using a function with
parameters. The parameter is a single byte and tells the device how to configure its 2 input channels.
Depending on the level of the 7th bit and the 1st bit this device can do either differential or single
ended conversions and it can be programmed to return the level of each channel individually or the
difference of the two channels in either polarity. The protocol for sending this information and
retrieving the conversion result is not highly complex, but could easily waste a day of time to figure
out and debug. If you wanted to use an LTC1298 in your design, you would not need to worry about
the communications protocol. As in the program sample below, you would simply include this library
routine in your program and call the function. The program below reads the two channels of the
LTC1298 and captures the data on a PC using the ACQUIRE.EXE program. The example is
complex, but should give you some ideas of what can be done with the TICkit. This program would
work with up to 26 TICkits in a small data aquisition network.

; This program uses an LTC1298 or LTC1288 (3v version)
; to take 12bit analog voltage readings once a second
; and sends these readings to a PC console
; running the ACQUIRE program.

; This program is designed so that multiple TICkits can be
; connected to this wire in a multi-drop configuration.

; Thanks to Scott Edwards for his Jan 1, 1996 "Nuts and Volts"
; article highlighting the use of the LTC1298 with the TICkit.

; Written by: Glenn Clark

DEF tickit_d LIB fbasic.lib

DEF ltc_cs pin_D0 ; pin D0 connects to ltc chip select
DEF ltc_clk pin_D1 ; pin D1 connects to ltc clk line
DEF ltc_data pin_D2 ; pin D2 connects to ltc data line

LIB ltc1298.lib ; contains routine to drive LTC1298

DEF designation 'a' ; this is the polling code for the PC
 ; for multiple TICkits connected to
 ; the serial wire

DEF net_pin pin_A7 ; this is the network aquisition pin

FBASIC TICkit 3 FBASIC Anatomy

Protean Logic 28

FUNC none line_sync
 LOCAL byte match_count 0b
 LOCAL byte rs_errors
BEGIN
 REP
 IF == (rs_receive (0, rs_errors), designation)
 IF ==(rs_errors, 0b)
 ++ (match_count)
 ELSE
 =(match_count, 0b)
 ENDIF
 ELSE
 =(match_count, 0b)
 ENDIF
 UNTIL >=(match_count, 2b)

 delay (1)
 rs_send (designation, 0b)
ENDFUN

FUNC none rs_out ; convert word to serial string
 PARAM word in_val ; parameter is destroyed
BEGIN
 rs_send(+(48b, trunc_byte(/(in_val, 1000w))), 0b)
 =(in_val, %(in_val, 1000w))
 rs_send(+(48b, trunc_byte(/(in_val, 100w))), 0b)
 =(in_val, %(in_val, 100w))
 rs_send(+(48b, trunc_byte(/(in_val, 10w))), 0b)
 =(in_val, %(in_val, 10w))
 rs_send(+(48b, trunc_byte(in_val)), 0b)
ENDFUN

3 FBASIC Anatomy FBASIC TICkit

29 Protean Logic

FUNC none main
 LOCAL byte tic_count
BEGIN
 pin_high (ltc_cs)
 pin_low (ltc_clk)
 rs_param_set (rs_invert | rs_9600 | net_pin)
 rs_stop_chek ()
 rtcc_int_256 ()
 REP
 =(tic_count, 150b) ; used 150 instead of 156
 ; to fudge latency time and
 ; probable xmit delays
 WHILE tic_count
 rtcc_wait ()
 rtcc_set (6b) ; divide by 250 (256 - 250 = 6)
 ; enough time for approx 128 tokens
 ; results in 78.25 readings per sec
 -- (tic_count)
 LOOP ; this loop should exit every 2 secs

 line_sync()
 rs_send(':', 0b)
 rs_out(read_ltc1298(0b))
 rs_send(' ', 0b)
 rs_out(read_ltc1298(1b))
 rs_send(13b, 0b)
 LOOP
ENDFUN

This program uses the internal RTCC counter of the TICkit to take readings approximately every
second. There are many libraries supplied with this development kit which are not documented in this
book. Use your text editor to look at all the *.lib files to see what is available. Also, check in
periodically with the Protean BBS or Protean home page to see if new function libraries are available.
Most of the libraries have some documentation in their source and can be used "as-is" to accomplish
many interesting things.

3.13 Captain, I think the functions are overload'n!
One last interesting feature of FBASIC is that it can overload function names. This means that
different functions can have the same symbol name. This is very useful for generic functions that
perform similarly but the data they operate on differs. For example, when adding numbers, different
variable precisions can operate more efficiently than others. The "+" sign is still the ideal symbol for
all addition functions, though. FBASIC will count the number of arguments in a function reference
and consider their types to determine which of the many possible "+" functions to use in each case.
Therefore, adding two bytes can use a different routine than two 32 bit longs, while still using the "+"
symbol for the function.

FBASIC TICkit 3 FBASIC Anatomy

Protean Logic 30

In the example of the function "plus" in section 3.10 of this manual, to make it work with byte values
and 32 bit long values it would be necessary for the programmer to create functions exactly like
"plus" using byte and long types for the PARAMETER definitions. These functions would normally
be collected together in a library of similar functions.

Programmers may wish to take advantage of this feature as they write special I/O libraries. Careful
use of this feature can make nice general purpose libraries.

3.14 What's Next?
This discussion only begins to cover the FBASIC language. The programmer needs to review the
KEYWORD summary and the standard library summary for more information on the FBASIC
language. The next chapter gets provides many examples. If this chapter gets boring, simply skip it
and start writing some programs. When you need a function or flow control capability, look to the
KEYWORD summary or standard library summary to find what you need. Spend some time looking
at the sample code and the supplied libraries.

3.15 Check out the the Protean Web Site
The Protean web site (http://www.protean-logic.com) is good source for information and sample
programs. Many programs and libraries are posted on the site for users to draw on for their own
applications. The message area can be used to ask other users questions, or to share ideas, etc. Leave
comments and questions on the web site to the page master. Protean checks these messages
periodically and will respond to messages as soon as possible. Enjoy the FBASIC TICkit!

3 FBASIC Anatomy FBASIC TICkit

31 Protean Logic

4 Simple Examples
4.1 A simple program to blink an LED
After you get your TICkit up and running the "Hello World..." program, a good second program is a
simple program to blink an LED. This assures that you understand basic I/O and how to connect
devices electrically to the TICkit. In this example a general purpose I/O pin drives an LED via a
current limiting resistor, R1. The output is wired to be low active, which means the LED is lit by
outputing a ground level. It is desirable to drive higher current devices at ground level because the
internal nature of the TICkit processor can drive higher currents from ground than from +5 vdc. The
circuit is shown below.

This circuit is very simple. When your program instructs, the TICkit processor will turn on an
internal switch that connects the pin labeled D0 to the ground. This completes a circuit in which
current flows from the +5 vdc power supply input, through the forward biased LED, through the 330
ohm current limiting resistor and then through the TICkit processor to the ground of the power
supply. No other pin of the TICkit module need to be connected. For the +5 vdc input you can use any
regulated power supply. Many people have access to a 5 volt supply. If not, you can use one of the
circuits shown in the next section as a power supply. Any of the general purpose outputs can be used
for this program (pins labeled D0 through D7 or A0 through A7). They all function in the same way.
When writing your programs refer to the pins through their cooresponding symbolic names. For
example the pin labeled D0 is symbolically refered to as "pin_d0" within a program just as the pin
labeled A5 is called "pin_a5". The symbols for the pins are actually numeric constants that evaluate to
a number between 0 and 15. Pin D0 is pin number 0, pin D1 is number 1 etc. and pin A0 is pin
number 8, pin A1 is pin number 9 and so on. It is usually preferable to refer to constants by symbolic
name as it makes the program easier to understand and allows easier modifications later on. Numbers
or variables can be used in the pin_high() or pin_low() functions when your application can benifit
from a pin reference that is variable.

An LED (Light Emitting Diode) is a special
diode fabricated to glow brightly when a current
passes through it. Like all diodes, it has a
polarity.

In the schematic symbol, the arrow should point
to the more negative connection to forward bias
the LED. The cathode (the terminal the arrow
points to) is usually indicated by a flat side on
the LED. The anode (the terminal the arrow
points away from) usually has the longest lead.

Because an LED's junction drop is 2 volts, a
current limit resistor is required to prevent the
LED from burning out in a 5 volt system.

FBASIC TICkit 4 Simple Examples

Protean Logic 32

The program for blinking the LED is equally simple. Most of the program is the required fbasic
verbage to inform the compiler of the version of the TICkit and where to start the program. Before
showing the final LED blinking program, examine the program below to simply turn on the LED.

DEF tic62_c
LIB fbasic.lib

FUNC none main
BEGIN
 pin_low(pin_d0) ; this is the same as pin_low(0)

 REP
 debug_on()
 LOOP
ENDFUN

The first function this program executes is the pin_low(pin_d0) line. This function makes the
specified pin an output and switches it to ground. Once this line executes, the LED is on. The lines at
the end of the program are there because of the nature of a controller. The TICkit is a controller
computer. This means it presumably controls something. In the above program, the last three lines
make the program continually ask to connect to the console. If these lines were not there, the TICkit
would have no idea what to do when it finished the function, so it would execute random garbage
contained in it's eeprom. This could reset the processor or do virtually anything. By putting the loop
at the end of our program, we can be sure that the processor is occupied in the loop and the LED stays
on for us to observe.

Most control programs are just big loops. They execute the same basic task over and over their entire
life. As you write more programs you will see this tendency emerge.

Okay, lets make the light blink. This next program does indeed blink the light, but does not give
satisfactory results, see if you can discover why:

DEF tic62_c
LIB fbasic.lib

FUNC none main
BEGIN
 REP
 pin_low(pin_d0)
 pin_high(pin_d0)
 LOOP
ENDFUN

Did you figure it out? The pin_d0 will indeed turn the LED on and off, but at so fast of a rate that it
appears to be on constantly. This effect is useful for multiplexing, but not for blinking some lights.
The correct program needs some delay for both the on state and the off state. If you have more delay
in the off state than the on state, the LED will appear dimmer. If you have more delay in the on state

4 Simple Examples FBASIC TICkit

33 Protean Logic

than the off state, the LED appears brighter. This is an important concept called pulse width
modulation (PWM) that we will discuss in detail later on. The correct program for a 1 second blink
rate is as follows:

DEF tic62_c
LIB fbasic.lib

FUNC none main
BEGIN
 REP
 pin_low(pin_d0) ; turn LED on
 delay(500) ; leave LED on for 500/1000 of a sec.
 pin_high(pin_d0) ; turn LED off
 delay(500) ; leave LED off for 500/1000 second.
 LOOP
ENDFUN

The delay() function halts the processor for the specified number of milliseconds (1/1000 second).
The delay function expects to see a number between 0 and 65535 (the range for a 16 bit word). Feel
free to modify this program. Control more LEDs, or maybe increase the blink rate by lowering the
delays. If the blink rate is less than about 1/30 of a second, the LED appears to be on constantly. At
this rate, you can alter the relative on and off delays to observe the effects of PWM. The following
code produces a continually glowing LED at about 1/2 brightness.

DEF tic62_c
LIB fbasic.lib

FUNC none main
BEGIN
 REP
 pin_low(pin_d0) ; turn LED on
 delay(15) ; leave LED on for 15/1000 of a sec.
 pin_high(pin_d0) ; turn LED off
 delay(15) ; leave LED off for 15/1000 second.
 LOOP
ENDFUN

There is another way to turn off the output of a pin besides changing the level of its output. You could
use the pin_in() function as shown below.

FBASIC TICkit 4 Simple Examples

Protean Logic 34

DEF tic62_c
LIB fbasic.lib

GLOBAL byte trash ; an 8 bit variable used below

FUNC none main
BEGIN
 REP
 pin_low(pin_d0) ; turn LED on
 delay(500) ; leave LED on for 500/1000 of a sec.
 =(trash, pin_in (pin_d0)) ; turn LED off
 delay(500) ; leave LED off for 500/1000 second.
 LOOP
ENDFUN

The pin_in function makes the specified pin an input and reads the level on the pin. A 0 is returned if
the level is low (<2.5 volts) or 255 if the level is high (>2.5 volts). In our example, we do not care
what the level is on the pin, we just want to turn off the output and make the pin an input. The
returned value must be assigned to something though, or the compiler will generate an error because
it knows the pin_in function returns a number and expects the program to use that value. Examples of
the pin_in() function are used extensively in later examples to read button presses.

4.2 Construction techniques and power sources
Lets take a minute and talk about the nuts and bolts of making projects. The TICkit module is
designed to easily plug into a solderless breadboard. These are readily available from most electronic
parts stores, including Radio Shack. Almost any 6 volt battery can be used as a power source for a
TICkit, but make sure you do not use any battery with more than 6 volts output or you will fry the
TICkit processor.

There is a power supply and construction area for a TICkit project on the T62-PROJ project board if
you are making a more permenant project. You can just use the power supply on the T62-PROJ board
by soldering wires on the +5 and ground buses and plugging these into a solderless breadboard.

The more reasonable approach is to make or purchase a +5 volt regulated power supply. To make
your own, you can use the following circuit based on a 7805 (LM340). All of the parts required for
this supply are readily available from parts stores including Radio Shack. The unregulated DC source
can also be a wall mount transformer supply.

4 Simple Examples FBASIC TICkit

35 Protean Logic

The circuits shown above are suitable for most typical applications. More advanced projects might
require regulators with lower queisent (no load) power consumption to conserve battery power, or you
might need more voltages than just +5 volts. There are many, many good texts on power supply
design and countless monolythic IC solutions for any of a wide range of power requirements. All the
TICkit directly needs is a good 5 volts with a reasonably sharp rise time. The 20 MHz TICkit62 itself
consumes less than 30ma not counting loads you place on it. The 4 MHz TICkit 62 uses less than
15ma unloaded.

4.3 A simple PWM circuit for controlling a low voltage DC motor.
We have already touched on the idea of pulse width modulation in our blinking LED example. PWM
is a way of producing a variable power/voltage/current output from a switched output. The TICkit 62
has no analog output, only digital (switched) outputs, so PWM is the only direct way to produce a
variable (analog) output. The TICkit 62 has two methods of producing PWM directly. The first uses a
built in function called "cycles()" to produce a square wave of given duration, frequency, and duty
cycle, on any of the general purpose I/O pins. The second method uses some dedicated hardware built
into the TICkit 62 processor for continuously producing a PWM output. This method can only
produce PWM on the pin labeled "A2'CCP". CCP stands for Counter/Capture/PWM. This second
method can actually perform 10 bit PWM.

As this circuit demonstrates, the cycles() method of producing PWM is sufficient only if the circuit
will not be loaded very heavily. There is a relationship which exists between the driving capability of
the PWM device (the TICkit and series resistor), the size of the capacitor, the frequency of the PWM
signal, and the load size. If the frequency is high enough, even larger loads can use this method.

Notice in the program that follows, that each time the cycles function executes, only 20 square waves
are generated. Between each execution of the cycles function, the program does some math and some

This program uses the cycles function
to produce a ramping voltage between
0 and 5 vdc. The meter can be a
voltage meter or an O-scope if you
have one.

 If R2 is disconnected, the voltage
repeatedly ramps up to 5 volts then
ramps down to zero cleanly. With R2
in circuit, there is a relatively large
spike at the end of the ramp and the
ramp gets slugish toward 5 volts. These
distortions occur because R2 loads the
circuit when there are program
interruptions in the PWM output.

FBASIC TICkit 4 Simple Examples

Protean Logic 36

flow control. Even though these other program steps take only a small fraction of time, it is enough of
a break in the PWM output to create a glitch when there is much load at all on the output. This type
of glitch is virtually unavoidable when using a software emulation method to generate PWM.

DEF tic62_c
LIB fbasic.lib

GLOBAL word duty_cycle ; make room for a variable and give it a name

DEF wave_length 256 ; produces a pulse frequency of approx 11KHz
DEF per_level 20 ; produces a ramp requency of approx 550Hz

FUNC none main
BEGIN
 pin_low(pin_d4) ; make pin D4 an output
 =(duty_cycle, wave_length)
 REP
 REP
 cycles(pin_d4, per_level, duty_cycle, wave_length)
 --(duty_cycle)
 UNTIL ==(duty_cycle, 0)

 REP
 ++(duty_cycle)
 cycles(pin_d4, per_level, duty_cycle, wave_length)
 UNTIL ==(duty_cycle, wave_length)
 LOOP
ENDFUN

One way in which to get a larger driving capacity out of this method of PWM is to connect the
unloaded PWM output to some type of linear amplifier like an audio output amp. This works well and
eliminates the problem with the limited drive capacity of the TICkit as well as the "glitches" when the
TICkit is in between cycles() functions as the program executes. The problem with this method is that
it is very power in-efficient. When the output of the amplifier is mid-way between ground and max
voltage output, the difference between the max voltage and the output must be dissipated by the
amplifier. This generates a lot of heat and wastes a lot of power. The follwing diagrams show the
amplifier arrangement and compare it to a variable resistor. The power dissipated by the resistor is
equal to the product of the voltage it drops times the current flowing through it. A switch is like a
very large value adjustable resistor adjusted to one extreme or the other. So either it drops zero
voltage, or it passes zero current. In either extreme the power dissipated is zero because the product of
anything multiplied by zero is zero. Now, if this resistor is adjusted mid-way, like our amplifier
producing a half voltage output, the power is equal to 1/2 of the max voltage times the current drawn
by the load. Just for argument, assume we are dealing with a 5 volt system and a load that draws 1
amp at 2.5 volts. If the amplifier is outputing 2.5 volts it must be droping the remaining voltage (2.5
volts). This means that it is dissipating 2.5 watts (2.5 v * 1 amp). Which is exactly what the load is
consuming. Half of our supply energy is wasted and we have a significant heat problem.

4 Simple Examples FBASIC TICkit

37 Protean Logic

Now lets deal with the actual best way to use the TICkit 62 to control a DC motor. This approach uses
the built in hardware to generate continuous PWM. Instead of a built in software routine turning a
general purpose pin on and off, the TICkit 62 uses dedicated hardware to turn pin A2'CCP on and off
on the basis of values contained in special registers. The TICkit 62 provides functions to set these
registers and the hardware does the rest independent of what our program is doing. This is called
background functionality.

We control an internal timer, called timer2, to generate the pulse frequency for our PWM. Timer2 has
a control, a period, and a count register. These determine the frequency of the PWM. To make the
TICkit 62 actually perform PWM, the CCP registers must be configured. These are the control and
CCP data registers. Once configured, you write to the CCP data register to control the duty cycle.
There are symbolic names for values that can be write to the control register. These constants are
defined in the token library. The program looks like this:

DEF tic62_c
LIB fbasic.lib

GLOBAL word ccp_reg ; CCP register is actually a word (16 bit)
 ; but only the lower byte (8 bits) are used.
 ; The high byte is used internally as a
 ; buffer. The Alias statement lets us
 ; conveniently refer to the low byte
ALIAS byte ccp_duty ccp_reg 0

FBASIC TICkit 4 Simple Examples

Protean Logic 38

FUNC none main
BEGIN
 pin_low(pin_a2)
 tmr2_cont_set(tmr2_con_on)
 tmr2_period_set(255b) ; this produces a pulse frequency
 ccp1_cont_set(ccp_pwm) ; of 19531 Hz. Clock frequency/256

 =(ccp_duty, 0b) ; now our CCP unit is set up to do PWM
 REP ; this is the main loop
 REP ; this loop decreases motor speed
 --(ccp_duty)
 ccp1_reg_set(ccp_reg)
 delay(10)
 UNTIL ==(ccp_duty, 0b)

 REP ; this loop increases motor speed
 ccp1_reg_set(ccp_reg)
 delay(10)
 ++(ccp_duty)
 UNTIL ==(ccp_duty, 0b)
 LOOP
ENDFUN

4 Simple Examples FBASIC TICkit

39 Protean Logic

The transistor, Q1 is operated as a saturation switch. This means that when A2 is high, the current
allowed to flow through the transistor via R1 is significantly greater than the load current divided by
the transistors Gain. Said another way, we are driving the transistor way on. This makes the
transistor act like a switch, either it is off and has no current flow, or it is on and has virtually no
resistance. The diode D1 and resistor R2 are designed to drain off the parasitic flyback voltage created
when current is removed from an inductor (the motor in this case). Bypassing the reverse EMF or
flyback voltage safegaurds components and reduces heat load on Q1.

4.4 Controlling relays for motor direction and electric braking
Now that we have a means for varying the drive to a motor or some source like it, we may need to
reverse the direction of the motor or provide a means for braking. The easy way to do this is with
relays. Driving relays is actually very easy with the TICkit. Our circuit will use an IC which has
several transistors in them arranged as darlington pairs. This single IC will provide buffering for up
to 7 relays. We only need to drive two for this example.

Relays are simply magnetically operated switches. When the coil is energized, the switch is thrown.
Two different types of relays are used in this example, one is a DPDT (double pole double throw) for
motor polarity, and the other is a SPDT (single pole double throw) for braking. The circuit shown
below is very similar to the last circuit except that the relays change how the resulting power is
applied to the motor. The relay K1 in its un-energized position connects the motor to achieve forward
rotation (forward rotation is assigned by convention of the motor's manufacturer . When positive

This circuit controls a relatively
large DC motor running at a
supply voltage of up to 50 volts
follows. This circuit can
conceivably switch up to 5
amps with this single switching
transistor and flyback diode.

Realistically, however, you
should only use this circuit for
switching 2 amps or less. If you
are going to switch higher
currents, R1 should be reduced
to 150 ohms.

No interface components are
shown in the diagram.

FBASIC TICkit 4 Simple Examples

Protean Logic 40

voltage is applied to the motor lead marked as positive the motor rotates forward). When K1
energizes, the positive of the motor is connected to ground and the output of the PWM is connected to
the negative of the motor, making it rotate in reverse.

Relay K2 controls whether the positive of the motor connects to K1' output or if it is shorted through
R3 to the negative of the motor. When K2 is un-energized, the motor sees power from the PWM and
direction control circuits. When K2 is energized, the motor is connected to a resistive load that
impedes the rotation of the motor. If the motor is not shorted when power is removed, it simply
coasts. If the motor is geared there may be some self braking, but braking capabilities are usually
required.

The following program illustrates these types of controls. The program sets up the PWM, turns the
motor on at half speed and rotates it forward for 1 second, removes power and brakes the motor for 3
seconds, reverses direction and powers the motor at 1/4 speed for 2 seconds, removes power and lets
the motor coast for 6 seconds, then repeats the process. A real control program probably has some
type of user interface for setting motor speed and direction instead of a hard coded routine. You can
use the console statements with the download cable to make an elementary front end as a further
programing exercise. An item that is usually found in this type of program is an acceleration and
deceleration routine. If you have delicate instruments or payload handled by the motor, you don't want
it damaged by inertial forces as your motor slams on and off. Play with different ideas and see what
you come up with. This is the essential electro-mechanical motor control circuit.

As you can see from the program, to energize a relay, perform a pin_high() on the specified I/O pin.
In this example we are using a 12 volt supply for both the motor and the relays. If the motor is really

4 Simple Examples FBASIC TICkit

41 Protean Logic

large and has large acceleration loads, you might need to separate the supplies to prevent the relays
from dropping when the motor starts. Also, you might use a larger voltage on the motors, which
either the relay's voltage will need to match, or a separate lower voltage supply will be required for
the relays.

DEF tic62_c
LIB fbasic.lib

GLOBAL word ccp_reg
ALIAS byte ccp_duty ccp_reg 0

DEF motor_reverse pin_a4 ; use symbolic name for direction I/O
DEF motor_brake pin_a3 ; use symbolic name for braking
 ; notice that the names imply the
 ; meaning when the I/O is high

FUNC none main
BEGIN
 pin_low(pin_a2)
 tmr2_cont_set(tmr2_con_on)
 tmr2_period_set(255b) ; this produces a pulse frequency
 ; of 19531 Hz. Clock frequency/256

 ccp1_cont_set(ccp_pwm)
 =(ccp_duty, 0b)
 ccp1_reg_set(ccp_reg) ; turn motor off

FBASIC TICkit 4 Simple Examples

Protean Logic 42

 ; now our CCP unit is set up to do PWM
 ; repeat sequence of motor movements.
 REP

 pin_low(motor_reverse) ; motor in forward dir
 pin_low(motor_brake) ; motor is under power
 =(ccp_duty, 128b)
 ccp1_reg_set(ccp_reg) ; power motor at 1/2 speed
 delay(1000) ; wait 1 second.

 pin_high(motor_brake) ; remove power and brake the motor
 =(ccp_duty, 0b)
 ccp1_reg_set(ccp_reg) ; put PWM at 0
 delay(3000) ; wait 3 seconds

 pin_high(motor_reverse) ; motor is reversed
 pin_low(motor_brake) ; release the brake
 =(ccp_duty, 64b) ; power at 1/4 speed
 ccp1_reg_set(ccp_reg)
 delay(2000) ; wait for 2 seconds

 =(ccp_duty, 0b)
 ccp1_reg_set(ccp_reg) ; put PWM at 0
 delay(6000) ; wait 6 seconds
 LOOP
ENDFUN

4 Simple Examples FBASIC TICkit

43 Protean Logic

The solid state equivelent of the relay and PWM transistor is called an 'H' bridge. A schematic for a
working H-bridge is shown above. The resistor values were selected for a 12 volt motor @ 2 amp
max. If contA and contB are at the same logic level, the motor is not being driven. If contA is low
and contB is high, the motor spins forward. If contA is high and contB is low, the motor spins in
reverse.

4.5 Closed Loop Circuit Feedback in Control Circuits
Most control systems, especially those dealing with mechanical control, use a feedback system to see
if the desired positioning has indeed taken place. When an action is double checked by a sensor and
corrective action is taken the control mechanism is called "closed loop". This is similar to sending a
registered letter through the mail with a return receipt requested. You can be sure your letter was
indeed delivered. Ordinary mail is "open loop" and you rely on the integrity of the postal system to
get your mail delivered, and you tolerate some lost mail.

In the next example a quadrature encoding sensor is used with an index sensor to locate the absolute
position of a rotating shaft. Although we won't put all the electronics for driving the motor in the
schematic, these additional components could easily be incorporated with a motor driving circuit like
those talked about earlier.

First, what is a quadrature encoding sensor. An encoding sensor is a collection of switches, either
mechanical, optical, or magnetic that indicate the angular position of a shaft. These types of encoders

FBASIC TICkit 4 Simple Examples

Protean Logic 44

usually have between 16 and 512 positions per revolution. Some encoders produce an absolute binary
or Gray's coded position output. The one used in this example is a relative position sensor that
produces a quadrature output. The output waveforms look as shown below. When the sensor rotates in
one way, signal A's phase leads signal B's, when the sensor rotates the other way, signal B's phase
leads signal A's. The sensor electronics need to watch these two signals to increment or decrement a
counter. We assume the motor and mechanical inertia of the system prevent the signals from
changing too fast. This is a reasonable assumption when the motor's output shaft is geared down. If
there are more than 20 phases per second per signal, dedicated electronics are needed to count the
position.

Earlier we said the quadrature encoder gives relative position. By this we mean an additional signal,
called an "index", is required in the system to reset the position count in the controller. When power
is first applied to the system, the controller must turn the motor on in the direction toward the index
mark. When the index signal switches, the controller must reset the counter. After this step, the
controller has the absolute position of the system mechanics.

The diagrams show an endoder circuit and how an optical index is created. The LED is continuously
lit and an optical interrupting fixture is connected to the rotating shaft so that only one position
interrupts the beam. When the interrupting is not in place, the light turns on the photo transistor.
Because the resistance of the transistor when turned on is so much lower than the 22K pull-up
resistor, the output is very nearly at ground level. When the optical interruption blocks the light from

4 Simple Examples FBASIC TICkit

45 Protean Logic

the LED, the transistor turns off and has a high resistance relative to the 22K resistor. The output
then is very nearly +5 vdc.

The following program fragment for the circuit follows. Notice that this is not a complete program
and needs to be integrated into a positioning program, like the ones previously shown, to be a
complete servo system.

GLOBAL word shaft_pos ; absolute shaft position
GLOBAL byte prev_sigb ; previous signal B

FUNC none position_count
 LOCAL byte cur_sigs
BEGIN
 =(cur_sigs, dport_get()) ; read all 8 pins of D port
 IF ==(prev_sigb, b_and(cur_sigs, 0y00000100b))
 ; no change to count
 ELSE
 IF prev_sigb
 IF b_and(cur_sigs, 0y00000010b)
 --(shaft_pos)
 ELSE
 ++(shaft_pos)
 ENDIF
 ELSE
 IF b_and(cur_sigs, 0y00000010b)
 ++(shaft_pos)
 ELSE
 --(shaft_pos)
 ENDIF
 ENDIF
 ENDIF

 =(prev_sigb, b_and(cur_sigs, 0y00000100b))
ENDFUN

This concludes our discussion on electro-mechanical control. Many other options exist in this arena
from driving solenoids, to driving stepper motors, to using self contained servo mechanisms like RC
servos. Check the release disk and the Protean web site for sample programs and applications notes. If
you are interested in building some of the circuits talked about in this section, Digi-key Corporation
and Jameco Electronics are sources for all parts mentioned in these circuits. You can find their
contact information at the Protean web site.

4.6 Reading and Debouncing Switches.
No matter what your project is, a simple user interface is often required. A user interface usually
constists both of a way to tell the controller what to do, and a way for the controller to tell you what it

FBASIC TICkit 4 Simple Examples

Protean Logic 46

is doing. We have looked at LEDs as a way for the controller to indicate its status, but how do we tell
the controller what to do, aside from changing its program?

The most common answer to this question is a collection of buttons and switches. This can vary from
a few push buttons to accomplish a "wrist watch" type of interface, to a full 84 key ASCII keyboard.

We touched on the concepts relating to switch input in the rotary encoder example. The basic
electrical problem is to make an SPST button (single pole single throw) produce the voltages required
by the digital circuits of the controller. The solution is to use a resistor to either pull up or pull down
the voltage when the switch is open. The next circuit example uses two switches and two LEDs. As
shown in the schematic below, the switch SW1 is wired so that it connects the pin labeled D1 to
ground when it is closed. When SW1 is open, pin D1 sees +5 volts through resistor R1. R1 is called a
pull-up resistor because its function is to pull a digital line high when no other component is driving
it low. Conversly, SW2 is connected so that when closed, it connects the TICkit pin labeled D2 to +5.
R2 pulls pin D2 low when the switch is open, so it is called a pull-down resistor. Both SW1 and SW2
are momentary push buttons, which means they connect only while a being pressed.

The program shown below uses the circuit above to implement a meaningless program. When SW1 is
pressed 10 or more times, LED2 lights. LED1 will light every time SW1 is pressed. Button SW2
resets LED2 if it is on and restores the count of button presses to 0.

4 Simple Examples FBASIC TICkit

47 Protean Logic

DEF tic62_c
LIB fbasic.lib

GLOBAL byte press_count 0b

FUNC none main
BEGIN
 REP
 IF pin_in(pin_d1)
 ; do nothing the button is not pressed
 pin_high(pin_d6)
 ELSE
 ; button is pressed
 pin_low(pin_d6)
 IF <(press_count, 10b)
 ++(press_count)
 ELSE
 pin_low(pin_d7)
 ENDIF
 ENDIF

 IF pin_in(pin_d2)
 =(press_count, 0b)
 pin_high(pin_d7)
 ENDIF

 ; try putting the following in the program later
 ; delay(20)
 LOOP
ENDFUN

When you type in this program, leave the delay(20) line commented out, and execute the program.
You will find the results unsatisfactory. The 10 count LED seems to light too soon, sometimes it
lights on the first key press. Why is this?

The reason has to do with the physical nature of a switch. Most switches bounce their contacts due to
the mechanical properties of the switch. This means that for a few milliseconds, the contacts are
closing and opening for a random number of times. This TICkit processor is fast enough to catch
these very fast bounces which look like repeated key presses. Now put the delay(20) line in the
program by removing the ';'. The delay of 20 milliseconds makes the program insensitive to key
bounce and thus it works just as we expect. Often, there is no need for an extra delay when
debouncing keys in a program. Many times there is enough delay associated with the main control
function too make the key scanning insensitive to key bounce.

Our next two switch examples involve scanned key matrix. It may seem like a lot of added complexity
to scan a matrix of keys when compared to the simplicity of running each switch to an I/O line on the
processor. In fact it is more complex, but it uses fewer I/O lines as the number of keys grows, and it

FBASIC TICkit 4 Simple Examples

Protean Logic 48

requires fewer steps to determine if any keys are pressed. This can save processing time because
keyboards spend most of their time with no keys pressed.

Notice in the first diagram that each key connects a unique combination or row and column wires. It
is the combination of row and column that allow the microcontroller to determine which key is
pressed. The number of rows or columns may change in different keypads, but the basic idea remains
the same. Your program needs to determine the exact meaning of each key. Some keys may produce
specific actions, other keys may be converted to ASCII characters for display or for use as data.

The first circuit uses a 16 key matrix arranged as 4 rows of 4 columns. We bring one row of the four
low to see if any keys are pressed on that row. The four column inputs are then read to see if there are
any lines low, if so, the corresponding key is pressed. It is important that only one row output be low
at a time to correctly identify a single key press. The column inputs are all tied high with pull-up
resistors to make the inputs high when no key is pressed. If appropriate, however, the program could
make all row outputs low and read the column inputs. If all the column inputs are still high, none of
the keys are pressed. This can be a useful way to determine if program time needs to be devoted to
keyboard scanning. The following program demonstrates the technique used to scan a key matrix
directly.

4 Simple Examples FBASIC TICkit

49 Protean Logic

DEF tic62_c
LIB fbasic.lib

GLOBAL byte scan_row 0y11111110b
GLOBAL byte scan_col 0y00000001b
GLOBAL byte scan_number 0b

FUNC none main
BEGIN
 dtris_set(0y00001111b)
 REP
 dport_set(scan_row)
 delay(1)
 IF b_and(dport_get(), scan_col)
 ; no key is down go to next scan
 ++(scan_number)
 IF ==(scan_col, 0y00001000b)
 =(scan_col, 0y00000001b)
 IF ==(scan_row, 0y11110111b)
 =(scan_row, 0y11111110b)
 ELSE
 =(scan_row, <<(scan_row))
 ++(scan_row)
 ENDIF
 ELSE
 =(scan_col, <<(scan_col))
 ENDIF
 ELSE
 ; key is pressed
 con_out(scan_number)
 REP
 delay(10)
 UNTIL b_and(dport_get(), scan_col)
 ENDIF
 LOOP
ENDFUN

There are only a few tricks to key scanning. The first is to allow time between when you write the row
scan out and when you read the scan result in. The second is to make sure that all keys are released
after a key press is detected, before you detect the next key press. If you do not do this, multiple keys
depressed accidentally can lead to completely wrong interpretations about key presses. If you need
multiple keys to be pressed simultaneously, like a shift or "alt" key, put all those keys on a seperate
row. You may even wish to put diodes on these keys.

This key scanning circuit also uses a few CMOS logic ICs (integrated circuit). This is to illustrate the
use of such circuits and how they can save microcontroller I/O. This circuit can scan up to 64 SPST

FBASIC TICkit 4 Simple Examples

Protean Logic 50

normally open switches, and uses only 7 I/O lines.

DEF tic62_c
LIB fbasic.lib

GLOBAL byte key_value
GLOBAL byte ascii_value ob

FUNC byte key_lookup
 PARAM byte key_in
BEGIN
 =(exit_value, '?')
 IF <(key_in, 10b)
 =(exit_value, +(key_in, '0'))
 ELSE
 IF <(key_in, 36b)
 =(exit_value, +(-(key_in, 10b), 'A'))
 ENDIF
 ENDIF
ENDFUN

4 Simple Examples FBASIC TICkit

51 Protean Logic

FUNC none main
BEGIN
 dtris_set(0y11000000b)
 rs_param_set(debug_pin)
 REP
 =(key_value, 0b)
 =(ascii_value, 0b)
 REP
 dport_set(key_value)
 delay(1)
 IF pin_in(pin_d7)
 IF ==(ascii_value, 0b)
 =(ascii_value, key_lookup(key_value))
 con_out_char(ascii_value)
 ENDIF

 delay(10)
 ELSE
 ++(key_value)
 ENDIF

 UNTIL ==(key_value, 64b)
 LOOP
ENDFUN

The program above is elementary, but shows how to get from key scan numbers to ASCII output.

4.7 Using Protean's I2C Xtender IC for more resources
A common problem encountered when designing controller applications based on single chip
controllers is the lack of I/O or other controller resources. To meet this demand for additional
capabilities, a trend has developed toward serially connected peripheral ICs. One example of this is
Protean's I2C Xtender IC. This device is a specially programmed IC that responds to commands over
its Inter-Integrated Circuit (IIC or I2C) bus. This bus connects to a host processor using only two
wires. If a TICkit is the host, the connection can use the EEprom bus wires leaving all 16 of the
TICkits general purpose I/O lines available. Up to 8 or more Xtenders can be connected to a single
host via these two lines.

A single Xtender IC gives the system the following hardware resources: 2 CCP I/O pins, a 32 bit
real-time seconds counter, 3 time bases, a unipolar stepper motor controller, 128 bytes of RAM, a
buffered RS232 port, a 16 bit counter, 4 100-Hz PWM outputs, and 5 8-bit A/D channels.

A sample connection to an Xtender is shown below. The I2Cclk and I2Cdata lines form the logical
connection. In addition to these lines, the /IRQ line, and /RES of the Xtender are connected to the
/IRQ, and EEpwr of TICkit respectively. A sampling of I/O components are connected to the Xtender
in the diagram to demonstrate the A/D, PWM1 (CCP1), button input, general purpose output, 100 Hz
PWM and time base outputs.

FBASIC TICkit 4 Simple Examples

Protean Logic 52

In the program that follows, every press of SW1 causes a read from the RTC seconds count and a read
of A/D channel 1. You can vary the input to the A/D channel by changing the position of R1. To
make the operation of the A/D clearer, you can use a multi-turn version of resistor R1. LED D3
follows the status of SW1 except that it inverted to demonstrate TICkit processing. LED D2 shows the
effects of the 100 Hz PWM. LED D1 shows the effects of the PWM1 output which is a hardware
generated, higher frequency pwm. LED D1 and D2 bright and dim out of phase with each other so
that while one gets brighter, the other gets dimmer.

There are many more things that the Xtender can do and programming the Xtender is a subject in
and of itself, but this example shows how simple register write and reads accomplish control of the
Xtender. Communication with the Xtender takes place at the same speed as communication with the
EEprom on the TICkit (400 Kbps) so it takes commands very quickly.

Commands for the Xtender are formed from constants contained in the Xtender's library. Use the '|'
vertical bar character to combine the device number with the specific command. This method keeps
the code very clean and readable.

DEF tic62_c
LIB fbasic.lib

LIB xtn73h.lib

GLOBAL byte duty_temp 0b ; duty cycle for D1 and D2
GLOBAL byte button_last 0b ; last status of button
GLOBAL long time_temp ; used to build up the seconds count
GLOBAL byte temp_val ; temporary value for reading/writing

4 Simple Examples FBASIC TICkit

53 Protean Logic

FUNC none main
BEGIN
 delay(500) ; let Xtender get out of power up reset
 ; initialize the Xtender
 IF ==(i2c_read(xtn_dev0 | xtn_reset), 8b)
 ; this is a version H Xtender
 ENDIF

 i2c_write(xtn_dev0 | xtn_pins_out, 0y00000011b)
 i2c_write(xtn_dev0 | xtn_pins_in, 0y00000100b)
 i2c_write(xtn_dev0 | xtn_gp_cont, xtn_pwme_0)
 i2c_write(xtn_dev0 | xtn_ad_con, xtn_ad_pwr | xtn_ad_chan1)
 i2c_write(xtn_dev0 | xtn_tmr2_con, xtn_tmr2_en)
 i2c_write(xtn_dev0 | xtn_tmr2_per, 255b)
 i2c_write(xtn_dev0 | xtn_ccp1_con, xtn_ccp1_pwm)

 REP
 IF b_and(i2c_read(xtn_dev0 | xtn_pins), 0y00000100b)
 =(button_last, 0b) ; button is not pressed
 i2c_write(i2c_dev0 | xtn_pins_low(0y00000010b)
 ELSE
 ; button is pressed
 i2c_write(i2c_dev0 | xtn_pins_high(0y00000010b)
 IF button_last
 ; get real time seconds count and A/D value
 =(temp_val, i2c_read(xtn_dev0 | xtn_clk_tic))
 ; above captures 32 bit count
 =(temp_val, i2c_read(xtn_dev0 | xtn_clk_cnt3))
 =(time_temp, to_long(temp_val))
 =(temp_val, i2c_read(xtn_dev0 | xnt_clk_cnt2))
 =(time_temp, +(*(time_temp, 256b), temp_val))
 =(temp_val, i2c_read(xtn_dev0 | xnt_clk_cnt1))
 =(time_temp, +(*(time_temp, 256b), temp_val))
 =(temp_val, i2c_read(xtn_dev0 | xnt_clk_cnt0))
 =(time_temp, +(*(time_temp, 256b), temp_val))
 =(temp_val, i2c_read(xtn_dev0 | xtn_ad_reg))
 con_string("Time at press: ")
 con_out(time_temp)
 con_string(" Analog Level: ")
 con_out(temp_val)
 con_string("\r\l")
 ENDIF

FBASIC TICkit 4 Simple Examples

Protean Logic 54

 =(button_last, 255b)
 ENDIF

 delay(10)
 ; deal with the PWMs
 i2c_write(xtn_dev0 | xtn_ccp1_low, duty_temp)
 i2c_write(xtn_dev0 | xtn_ccp1_high, 0b)
 i2c_write(xtn_dev0 | xtn_pwm_0, com(duty_temp))
 ++(duty_temp)
 LOOP
ENDFUN

4.8 Connecting with Other Resources via I2C
The previous example demonstrated how a TICkit can communicate to an Xtender IC via the TICkit's
built in I2C interface. There are many manufacturers of I2C compatible products and not all of them
use protocols which are compatible with the TICkit's built in read and write formats. This example
deals with one such part. This example connects a TICkit to 8 Dallas DS1621 temperature sensing IC
via two TICkit general purpose I/O pins controlled by a TICkit I2C simulating library. This simulated
I2C is not nearly as fast as the protocols built into the TICkit, but it will accomplish the
communications required fairly quickly, certainly as fast as required by most applications. This
program actually implements a complete on-demand temperature acquisition system. A partial
schematic for this circuit is shown below. An actual application would probably have additional
circuitry connected to the DS1621 ICs.

Notice that the two lines used for the I2C bus are pulled high. This is required by the I2C protocol
because multiple sources can drive both the clock and data lines. Also notice how the pins A0, A1,
and A2 on each DS1621 are strapped for a different address. This is how each IC knows which I2C
address to respond to. The 'A' pins allow the designer to specify 3 of the 7 I2C address pins. The other
four are hard coded by the manufacturer of the IC. Some ICs internally specify all 7 address lines and
must be ordered with different address (like the Xtender) if more than one will be used on an I2C bus.

4 Simple Examples FBASIC TICkit

55 Protean Logic

The following program is relatively complex for an example. It shows how defines can be used in
conjunction with a pre-written library to customize the library for the program. This was done with
sim_i2c.lib file to specify which pins to use. We also use the DEF directive to define which pin to
communicate with the PC or terminal. In this example, we can use the download socket on the TICkit
module with the download cable, except that we use a terminal program like WINTERM instead of
the download software. This just makes demonstrating easier. We leave it to the reader to examine the
sim_i2c.lib file to see how this all works.

; Program to read the 1621 on command and return the value to a PC
; via a serial port. Simulated I2C routines using GP pins are
; used for this routine because the 1621's protocols are too
; complex for the i2c_read and i2c_write functions.

DEF tic62_a
LIB fbasic.lib

DEF si2c_data pin_a1 ; these are the pins to use for I2C
DEF si2c_clk pin_a2
LIB sim_i2c.lib ; this libarary is un-documented in man.
 ; but is contained on the release disk.

; The 1621 has three pins for strapping an I2C address.
; This means up to 8 1621 devices can exist on the I2C bus
; and be addressed independently.

; The defines below give the addresses for the 8 devices.
; If a read is to be performed, the lsb of the address must be set.

DEF DS1621_dev0 0xA0b
DEF DS1621_dev1 0xA2b
DEF DS1621_dev2 0xA4b
DEF DS1621_dev3 0xA6b
DEF DS1621_dev4 0xA8b
DEF DS1621_dev5 0xAAb
DEF DS1621_dev6 0xACb
DEF DS1621_dev7 0xAEb

FBASIC TICkit 4 Simple Examples

Protean Logic 56

; The 1621 has a fairly elaborate command system.
; Following the typical I2C device address/control byte,
; an 8 bit command byte is used to inform the 1621 of the
; nature of the data transfer. The commands and associated
; data are listed below:

DEF DS1621_temp 0xAAb ; This command reads the temperature of the
 ; last conversion. The 1621 will send 2
 ; bytes(16 bits) unless a stop bit is sent
 ; after the first byte. The second byte only
 ; has information in bit 7 because the 1621
 ; only converts 9 bits of data.

DEF DS1621_t_high 0xA1b ; This read/write 16bit register is used
 ; to control the Tout pin of the 1621.
 ; This is the high value used in
 ; comparisons with actual temp reading.
 ; If the actual temperature exceeds this
 ; value, Tout is driven high.

DEF DS1621_t_low 0xA2b ; This read/write 16bit register is used
 ; to control the Tout pin of the 1621.
 ; This is the low value used in comparisons
 ; with actual temp reading. If the actual
 ; temperature is less than this value,
 ; Tout is driven low. This creates a
 ; hysterisis region to prevent critical
 ; oscillations around a single temperature
 ; setpoint.

DEF DS1621_config 0xACb ; This read/write 8 bit register configures
 ; the 1621 for operation. The bits below
 ; explain the config options.

DEF DS1621C_done 0y10000000b ; 1= conversion finished.
DEF DS1612C_thf 0y01000000b ; 1= The device has exceeded the
 ; t_high value. This bit is only
 ; reset by writing the config
 ; register. This bit is unaffected
 ; by the temp falling below TH or TL
DEF DS1621C_thl 0y00100000b ; 1= The device temp has fallen below
 ; the t_low value. This bit is only
 ; reset by writing 0 to it in the
 ; config register. This bit is not
 ; affected by the temp exceeding TL
 ; or TH.
DEF DS1621C_NVB 0y00010000b ; 1= 1621 is busy writing data to the
 ; EEprom. Values written to th or tl

4 Simple Examples FBASIC TICkit

57 Protean Logic

 ; are stored in non volatile memory
 ; and writes can require up to 10 ms.
DEF DS1621C_pol 0y00000010b ; Output polarity for Tout. 1= a high
 ; is Vdd.
DEF DS1621C_single 0y00000001b ; 1= do a single conversion when
 ; start is commanded. 0= do
 ; continuous conversion when
 ; start is commanded.
DEF DS1621_count 0xA8b ; This 8bit register holds the count used
 ; for temp conversion. This read only
 ; register can be used for increased
 ; precision (up to 16bit)
DEF DS1621_slope 0xA9b ; This 7bit register holds the slope count
 ; used for temp conversion. This read only
 ; register can be used with the count
 ; register to calculate a more precise
 ; temperature (up to 16 bit)
DEF DS1621_start 0xEEb ; A write to this register starts
 ; conversions. The config register
 ; determins if a single conversion
 ; takes place or if continuous conversions
 ; will follow. A bit of the config register
 ; indicates when conversion is complete.
DEF DS1621_stop 0x22b ; A write to this register halts continuous
 ; conversion mode. The current conversion
 ; will finish then the 1621 will remain
 ; idle until the next start command.

DEF pc_serial pin_a7 ; this is the pin to use to communicate to PC

GLOBAL byte rs_command ; this is the command received from PC
GLOBAL byte err_val ; error on rs receive
GLOBAL byte dev_addr ; computed I2C address for 1621
GLOBAL byte config_read ; value of configuration register
 ; as read from the specified 1621
GLOBAL word temp_result ; 16 bit result as read from 1621
ALIAS byte temp_high temp_result 1b ; upper byte of result
ALIAS byte temp_low temp_result 0b ; lower byte of result

GLOBAL byte trash ; dummy variable when making pins inputs

FUNCTION none rs_word
 PARAM word rs_data
 LOCAL word place 10000w
 LOCAL word num
BEGIN
 =(num, rs_data)
 REPEAT

FBASIC TICkit 4 Simple Examples

Protean Logic 58

 rs_send(+('0', trunc_byte(/(num, place))))
 =(num, %(num, place))
 =(place, /(place, 10b))
 UNTIL ==(place, 1b)

 rs_send(+('0', trunc_byte(num)))
ENDFUN

FUNC none si2c_comm ; function to start message and send command
 PARAM byte addr
 PARAM byte comm
 LOCAL byte trash
BEGIN
 REP
 si2c_start()
 IF si2c_wbyte(addr)
 STOP
 ENDIF

 si2c_stop()
 LOOP

 =(trash, si2c_wbyte(comm))
ENDFUN

FUNC none main
BEGIN
 rs_param_set(rs_invert | rs_9600 | pc_serial)
 pin_high(si2c_data)
 pin_high(si2c_clk)

 ; configure 1621 for single conversion on command
 si2c_comm(ds1621_dev0, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev1, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev2, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev3, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

4 Simple Examples FBASIC TICkit

59 Protean Logic

 si2c_comm(ds1621_dev4, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev5, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev6, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 si2c_comm(ds1621_dev7, ds1621_config)
 =(trash, si2c_wbyte(ds1621c_single))
 si2c_stop()

 REP
 ; wait for a command from PC (ignore bogus values)
 =(rs_command, rs_receive(0b, 0b, err_val))
 IF err_val
 ELSE
 IF and(>=(rs_command, 'A'), <=(rs_command, 'H'))
 ; valid command calc I2c address and get readings
 =(dev_addr, +(0xA0b, *(2b, -(rs_command, 'A'))))
 si2c_comm(dev_addr, ds1621_start)

 ; repeatedly read config until conversion is done
 REP
 si2c_comm(dev_addr, ds1621_config)
 si2c_stop()
 si2c_start()
 =(trash, si2c_wbyte(b_or(dev_addr, ~
 ~ 0y00000001b)))
 =(config_read, si2c_rbyte(0b))
 si2c_stop()
 UNTIL b_and(config_read, ds1621c_done)

 ; now read the conversion results
 si2c_comm(dev_addr, ds1621_temp)
 si2c_stop()
 si2c_start()
 =(trash, si2c_wbyte(b_or(dev_addr, 0y00000001b)))
 =(temp_high, si2c_rbyte(0xffb))
 =(temp_low, si2c_rbyte(0b))
 si2c_stop()

 ; now compute result into a normalized 16 bit number
 ; and send result to PC with a return at the end.

FBASIC TICkit 4 Simple Examples

Protean Logic 60

 =(temp_result, /(temp_result, 128b))
 rs_word(temp_result)
 rs_send('\r')
 ENDIF
 ENDIF
 LOOP
ENDFUN

4.9 Using a 3-wire interface to control tons of LEDs
In the last examples, we used the I2C bus to communicate to peripheral ICs. The I2C bus is
sometimes called the 2-wire bus. In this example we will use a 3-wire bus, another serial standard, to
communicate with a MAXIM IC designed for driving multiplexed numeric LED displays. The IC is
the MAX7219 8-Digit LED Display Driver. This IC drives a matrix of LEDs so that 256 individual
LEDs can be driven from a single 24 pin IC. The magic of this technique is called multiplexing (time
multiplexing to be exact). This means that at any given point of time, only 8 LEDs are being driven,
but each 8 LEDs is driven in quick succession over time. Our eyes interpret this blur as the desired
pattern; all LEDs which received any drive appear to be on continuously. This is similar to our first
example where two LEDs blinked alternately, when there was no delay in the loop, both LEDs
appeared to be on continuously. This IC is called a digit driver because 7 segment LED digits contain
8 LEDs (7 segments and a decimal point) that share a common cathode or anode. By connecting all
the same segments together and calling them rows, and using each of the 8 digits common cathodes
at columns, an 8 x 8 matrix of diodes is created. If you just want to control LEDs and not digits, you
can electrically arrange your diodes in groups of 8 that share a common cathode. This has been done
often for Christmas displays. The circuit for this example is shown below. There are no real surprises
here, multiple 7219s can be daisy chained for more LED drivers yet. The program simply lowers the
"load /CS" line, shifts 16 bits of data into the Din pin using the clk pin, and the communication is
complete. A resistor is used with the Iset pin to Vdd. This sets the maximum drive for any segment

The program for interfacing to the 7219 is also elementary. Each communication sends 16 bits which
is comprised of 8 data bits and 4 bits of register address. The remaining 4 bits are unused. The 16 bits

4 Simple Examples FBASIC TICkit

61 Protean Logic

are sequentially shifted out the D2 pin and clocked into the 7219 using the D3 pin. The 16th bit shifts
out first and each bit is latched in on the rising edge of clk. A subroutine takes care of shifting out the
16 bits. DEF statements define constants used to refer to each of the registers in the 7219. The
program simply lights every LED in each row then every LED in each column in succession.

DEF tic62_c
LIB fbasic.lib

DEF max7219_data pin_d2
DEF max7219_clk pin_d1
DEF max7219_load pin_d3

DEF max7219_dig0 0x0100w
DEF max7219_dig1 0x0200w
DEF max7219_dig2 0x0300w
DEF max7219_dig3 0x0400w
DEF max7219_dig4 0x0500w
DEF max7219_dig5 0x0600w
DEF max7219_dig6 0x0700w
DEF max7219_dig7 0x0800w
DEF max7219_decode 0x0900w
DEF max7219_intens 0x0A00w
DEF max7219_limit 0x0B00w
DEF max7219_shutdn 0x0C00w
DEF max7219_test 0x0F00w

GLOBAL word cur_row
GLOBAL byte cur_col

FBASIC TICkit 4 Simple Examples

Protean Logic 62

FUNC none max7219_send
 PARAM word max_comm
 PARAM byte max_data
 LOCAL word max_result
 LOCAL byte bit_counter 16b
BEGIN
 =(max_result, +(max_comm, max_data))
 pin_low(max7219_clk)
 pin_low(max7219_load)
 REP
 IF b_and(max_result, 0x8000w)
 pin_high(max7219_data)
 ELSE
 pin_low(max7219_data)
 ENDIF

 pin_high(max7219_clk)
 --(bit_counter)
 pin_low(max7219_clk
 UNTIL ==(bit_counter, 0b)

 pin_high(max7219_load)
ENDFUN

4 Simple Examples FBASIC TICkit

63 Protean Logic

FUNC none main
BEGIN
 ; start by initializing the display
 max7219_send(max7219_decode, 0y00000000b) ; numeric decode
 max7219_send(max7219_intens, 0y00001111b) ; full brightness
 max7219_send(max7219_limit, 0y00000111b) ; all rows (digits) on
 max7219_send(max7219_shutdn, 0y00000001b) ; normal operation
 max7219_send(max7219_test, 0y00000001b) ; test in progress
 delay(500) ; one half second of LED test
 max7219_send(max7219_test, 0y00000000b) ; no test in progress

 REP
 ; test rows independently
 =(cur_row, max7219_dig0)
 REP
 max7219_send(cur_row, 0y11111111b) ; All 8 LEDs on
 delay(250) ; wait 1/4 second
 max7219_send(cur_row, 0y00000000b) ; all 8 LEDs off
 =(cur_row, +(cur_row, 0x0100w)) ; next row
 UNTIL ==(cur_row, max7219_dig7)

 ; test columns independently
 =(cur_col, 0y00000001b)
 REP
 max7219_send(max7219_dig0, cur_col)
 max7219_send(max7219_dig1, cur_col)
 max7219_send(max7219_dig2, cur_col)
 max7219_send(max7219_dig3, cur_col)
 max7219_send(max7219_dig4, cur_col)
 max7219_send(max7219_dig5, cur_col)
 max7219_send(max7219_dig6, cur_col)
 max7219_send(max7219_dig7, cur_col) ; turn of col LEDs
 delay(250)
 max7219_send(max7219_dig0, 0b) ; turn off col LEDs
 max7219_send(max7219_dig1, 0b)
 max7219_send(max7219_dig2, 0b)
 max7219_send(max7219_dig3, 0b)
 max7219_send(max7219_dig4, 0b)
 max7219_send(max7219_dig5, 0b)
 max7219_send(max7219_dig6, 0b)
 max7219_send(max7219_dig7, 0b)

 =(cur_col, <(cur_col))
 UNTIL ==(cur_col, 0b)
 LOOP
ENDFUN

FBASIC TICkit 4 Simple Examples

Protean Logic 64

4.10 Using the Bus Routines to Control an LCD module
The example for controlling LEDs is similar to this example in that the goal is to display visual
information to the user of the application. In this example we are connecting the TICkit 62 to an LCD
module based on the popular Hitachi 44780 chip set. Most of the LCD alpha-numeric displays on the
market use this chip set and it has become the dominant defacto standard for displays up to 4 lines by
40 characters. These modules are usually available for $10 or less from surplus outlets like B.G.
Micro.

These modules are available with special electronics made by Scott Edwards Electronics and others
which allow them to be interfaced serially. This example does not use any additional electronics and
interfaces to the TICkit via a 4 bit serial bus connection. The direct connection is a more versatile in
that it allows reading of the modules memory as well as writing to it. This is handy for scrolling and
other effects. These modules can be connected by either a 4 bit or an 8 bit bus, but to conserve I/O we
sacrifice some speed of bus transfer to retain pins D0 through D3 for other uses. The circuit for this
example is shown above.

The key to this type of module is understanding its internal archetecture and command format. We
will discuss that next, but first we need to discuss the TICkit bus emulation routines. There are three
routines available in the TICkit 62 for using the general purpose pins in a bus simulation. As you
might imagine, the D-pins are used for the data lines of the bus, and the A pins are used for address
lines. The function buss_setup() is used to tell the TICkit which of the address lines will be used for
bus functions and which are free for general purpose use. The buss_setup() function also specifies
which data lines are used, either all 8 pins or only the top 4 are used by the bus simulation. An
additional option is available, if only 4 bits of data lines are used. That option is a single or double
nibble. The LCD module can use a 4 bit double nibble bus method instead of an 8 bit bus to transfer 8
bits worth of data.

The bus simulation can only use address lines 0 through 5 for actual address lines, pin A6 is used as a
Read/Write control line and pin A7 is reserved for download purposes. There is also a subtle
difference between pins A0-A2 and pins A3-A5. When the bus is idle or between operations, all the
address lines go to zero. To prevent false writes or reads to multiple registers in a single device, pins

4 Simple Examples FBASIC TICkit

65 Protean Logic

A3-A5 go to zeros first. This causes any selected device to become unenabled, then pins A0-A2 can
change with no effect. This method of bus interface is similar to Rockwell's or Motorola's method. It
means that there is a device enable and reading/writing is controlled by a single read/write line. The
other common type of bus interface is the Intel or Zilog method where a seperate line is used for
/write and for /read. These pins can be derived from the select logic and the R/W pin to generate the
desired signals. A logic diagram for this is shown above with this example's schematic.

Now lets take a closer look at the LCD module's electronics and archetecture. Whether the display is
2 x 40 or 4 x 16 or any line-column configuration in between, the internals of the module are the
same. The display memory is organized as one line at addresses x00 to x27 and the second line at
0x40 to 0x67. If the display has 4 lines, the display memory for the first line is split between the first
and third line, while the display memory for the second line is split between the second and forth line.
This makes writing specific display positions and scrolling the display arcane, but it is doable none
the less.

In addition to the 160 bytes of display data RAM (DD RAM), there are 64 bytes of user
programmable character generator RAM. If the display is programmed for 5x7 characters, this comes
out to 8 custom characters. If the display is programmed for 5x10 characters, there are only 4 custom
characters available. The table that follows shows the mapping of the character generator RAM (CG
RAM) when in 5x7 character mode.

Only the pattern for two of the eight possible custom characters is shown, but the method should be
clear from these two examples. The two characters are programed for an 'H' and the small letter 'g' to
demonstrate a descender.

Character Codes
(as in DD RAM)
7 6 5 4 3 2 1 0

CG RAM addresses
(for programming)
7 6 5 4 3 2 1 0

Character Pattern
(as in CG RAM)
7 6 5 4 3 2 1 0

0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 X X X 1 0 0 0 1
0 0 0 0 0 0 0 1 X X X 1 0 0 0 1
0 0 0 0 0 0 1 0 X X X 1 0 0 0 1
0 0 0 0 0 0 1 1 X X X 1 1 1 1 1

FBASIC TICkit 4 Simple Examples

Protean Logic 66

0 0 0 0 0 1 0 0 X X X 1 0 0 0 1
0 0 0 0 0 1 0 1 X X X 1 0 0 0 1
0 0 0 0 0 1 1 0 X X X 1 0 0 0 1
0 0 0 0 0 1 1 1 X X X 0 0 0 0 0

0 0 0 0 * 0 0 1 0 0 0 0 1 0 0 0 X X X 0 0 0 0 0
0 0 0 0 1 0 0 1 X X X 0 0 0 0 0
0 0 0 0 1 0 1 0 X X X 0 1 1 1 1
0 0 0 0 1 0 1 1 X X X 1 0 0 0 1
0 0 0 0 1 1 0 0 X X X 1 0 0 0 1
0 0 0 0 1 1 0 1 X X X 0 1 1 1 1
0 0 0 0 1 1 1 0 X X X 0 0 0 0 1
0 0 0 0 1 1 1 1 X X X 0 1 1 1 0

There are two addressable registers in a 44780 based module. These are the command register and
data register. As you would expect, the data register is used to read or write data to the DDRAM or
CGRAM. The control register is less obvious. Reads from the control register return a busy flag in bit
7 and the current address counter (DDRAM pointer) in bits 0 thru 6. The table that follows
summarizes the command structure:

Instruction
name

Control
RS R/W

Data Bits
7 6 5 4 3 2 1 0

Description

Clear Display 0 0 0 0 0 0 0 0 0 1 Clears display and
returns cursor to home
position (address 00)

Return Home 0 0 0 0 0 0 0 0 1 X Places cursor at
address 00. Also
un-shifts display

Entry Mode 0 0 0 0 0 0 0 1 I S Sets the cursor
movement direction.
I=1 inc, I=0 dec,

S=0 no shift,
S=1 shift display.

Display Control 0 0 0 0 0 0 1 D C B Turn Display on (D),
Turn Cursor on (C),
Blink Cursor on (B).

4 Simple Examples FBASIC TICkit

67 Protean Logic

Cursor & Display
Shifting

0 0 0 0 0 1 D R X X Controls shifting and
cursor movement.

 D=1 shift display,
D=0 cursor move,
R=1 shift right,
R=0 shift left.

Interface &
Format

0 0 0 0 1 D L F X X Controls data bus
width and

 display format.
 D=1 8 bit bus,
D=0 4 bit bus,

double lines (L),
Large Font (F)

Set CG RAM
Address

0 0 0 1 A A A A A A Sets the address for
CG RAM reading and
Writing. Subsequent
read and writes to

data register affect
CG RAM contents.

Set DD RAM
Address

0 0 1 A A A A A A A Sets the address for
DD RAM reading and
Writing. Subsequent
read and writes to

data register affect
DD RAM contents.

Read Status 0 1 B A A A A A A A Reads 44780 status.
B=busy processing,
AAAAAAA = address

count; either DD or CG
RAM address.

Write Data 1 0 Data to Write Either DD or CG data
Read Data 1 1 Data Read Either DD or CG data

The program which follows follows a specific sequence of commands to initialize the display. A
specific command write timing pattern is necessary to ensure the display initializes properly.

DEF tic62_c
LIB fbasic.lib

DEF xbuss_mask 0y00100001b ; These are the address lines used
DEF lcd_data_reg 0y00100001b ; Address of data register
DEF lcd_cont_reg 0y00100000b ; Address of control register

FBASIC TICkit 4 Simple Examples

Protean Logic 68

FUNC none lcd_init
BEGIN
 buss_setup(+(xbuss_mask, buss_4bit)) ; setup buss for 4bit
 delay(15) ; wait 15ms
 buss_write(lcd_cont_reg, 0y00110000b)
 delay(5)
 buss_write(lcd_cont_reg, 0y00110000b)
 delay(1)
 buss_write(lcd_cont_reg, 0y00110000b)
 lcd_cont(0y00100000b) ; turn it into 4two

 buss_setup(+(xbuss_mask, buss_4two))
 lcd_cont(0y00101000b) ; assumes 2 line 5x7 font
 lcd_cont(0y00001111b)
 lcd_cont(0y00000001b)
 lcd_cont(0y00000110b)
ENDFUN

FUNC none lcd_cont_wr
 PARAM byte in_val
BEGIN
 WHILE >=(buss_read(lcd_cont_reg), 0y10000000b)
 LOOP ; delay until not busy

 buss_write(lcd_cont_reg, in_val)
ENDFUN

FUNC none lcd_data_wr
 PARAM byte in_val
BEGIN

 WHILE >=(buss_read(lcd_cont_reg), 0y10000000b)
 LOOP ; delay until not busy

 buss_write(lcd_data_reg, in_val)
ENDFUN

4 Simple Examples FBASIC TICkit

69 Protean Logic

FUNC none lcd_string
 PARAM word in_ptr
 LOCAL word temp_ptr
 LOCAL byte temp_val
BEGIN
 =(temp_ptr, in_ptr) ; don't affect calling value
 =(temp_val, ee_read(temp_ptr))
 WHILE temp_val
 lcd_data_wr(temp_val)
 ++(temp_ptr)
 =(temp_val, ee_read(temp_ptr))
 LOOP
ENDFUN

FUNC none lcd_out
 PARAM word lcd_data
 LOCAL word place 10000w
 LOCAL word num
BEGIN
 =(num, lcd_data)
 REPEAT
 lcd_data_wr(+('0', trunc_byte(/(num, place))))
 =(num, %(num, place))
 =(place, /(place, 10b))
 UNTIL ==(place, 0b)
ENDFUN

FUNC none main
 LOCAL word lcount 0
BEGIN
 delay(500) ; wait for 1/2 second for power to settle
 lcd_init()
 lcd_cont_wr(0y00000001b) ; Reset the LCD for good measure
 lcd_string("Hello World...")
 lcd_cont_wr(0y11000000b) ; position to first char on line 2
 lcd_string("Loop Count: ")
 REP
 lcd_cont_wr(0y11001100b) ; 12th char on line 2
 lcd_out(lcount)
 ++(lcount)
 LOOP
ENDFUN

This program just initializes the display, says "Hello World..." and counts loops on the second line of
the display. A simple program, but a good basis for working with these very versatile LCD modules.
There are additional LCD functions contained on the release disk for you to look over.

FBASIC TICkit 4 Simple Examples

Protean Logic 70

4.11 Fixed Point Arithmetic.
It is fairly common to deal with fractional results when designing controllers. This is a display or
calculation restraint because the units of measure are directly dictated by the sensors in the controller.
A controller with an LCD screen or other, more elaborate output capabilities should be able to present
data in an expected format. The TICkit 62 does not have a floating point library in its current version,
but it still can display numbers with fractional components.

The TICkit 62 has a signed LONG type number which is a 32 bit integer variable type. This size of
integer can display 9 digits of accuracy.Assume we are dealing with numbers from our sensors which
are no greater than 4096 (12 bit). This number only requires 4 digits to represent its full range. If we
use a LONG type to represent this number during calculation or display, we can scale the meaning of
this number by as much as 100000. In other words, we define one as being 100000 and we display our
numbers with a decimal point 5 places to the left. The number one will display as 1.00000 which is
exactly what you expect.

The key to making this easy is the format versions of the long numeric output functions. There are
three versions of this on the TICkit release disk. Function lcd_fmt() is for displaying formatted longs
on an LCD, function con_fmt() is for displaying formatted longs on the debug console, and function
rs_fmt() is for displaying formatted longs to an rs232 device. To make clear how these functions work
and how they are used, a copy of the con_fmt function is shown below. The meanings of the format
characters are explained in the source for the function.

;Routine to output a Long Number to the LCD display (Signed)

; Meanings of format string characters
; '$' print a $
; '.' print a .
; '#' print a number (leading zeros will not be printed)
; '0' print a number (leading zeros will print from this digit on)
; 'X' hold a place but to not print the number

4 Simple Examples FBASIC TICkit

71 Protean Logic

FUNCTION none con_fmt
 PARAM long in_data ; Data to print
 PARAM word pointer ; Data format string
 LOCAL long tempnum ; Copy of print data
 LOCAL word hpointer ; Copy of string pointer
 LOCAL long divisor 1l ; Divisor , used by routine
 LOCAL byte tempchr ; Data hold variable
 LOCAL byte first 0b ; flags register
 LOCAL byte tempdig ; temporary digit
BEGIN
 ; this section counts the number of digits and determines what
 ; the most significant digit's divisor will be as a result.
 =(tempnum, in_data)
 =(hpointer, pointer) ; Store format string start
 =(tempchr, ee_read(hpointer)) ; Read format string
 WHILE tempchr
 IF ==(tempchr, '#')
 =(divisor, *(divisor, 10b))
 ELSEIF ==(tempchr, '0')
 =(divisor, *(divisor, 10b))
 ELSEIF ==(tempchr, 'X')
 =(divisor, *(divisor, 10b))
 ENDIF

 ++(hpointer)
 =(tempchr, ee_read(hpointer)) ; Read format string
 LOOP

 ; Check for negative: displays sign and
 ; make number positive for conversion
 IF <(tempnum, 0b)
 con_out_char('-')
 =(tempnum, -(0l, tempnum))
 ENDIF

 ; Check for overflow of number: If divisor too large,
 ; write an * to indicate
 ; Then do conversion on remaining modulus of divisor
 IF >(/(tempnum, divisor), 0b)
 con_out_char('*')
 =(tempnum, %(tempnum, divisor)) ;
 ENDIF

FBASIC TICkit 4 Simple Examples

Protean Logic 72

 ; Begin actual conversion and display loop here
 =(divisor, /(divisor, 10b))
 =(hpointer, pointer) ; Store format string start
 =(tempchr, ee_read(hpointer))
 WHILE >=(divisor, 1b)
 IF ==(tempchr, '.')
 con_out_char(tempchr)
 ELSEIF ==(tempchr, '$')
 con_out_char(tempchr)
 ELSEIF ==(tempchr, 'X')
 =(tempnum, %(tempnum, divisor))
 =(divisor, /(divisor, 10b))
 ELSEIF ==(tempchr, '0')
 =(tempdig, trunc_byte(/(tempnum, divisor)))
 =(tempdig, +(tempdig, '0'))
 =(first, 0xffb)
 con_out_char(tempdig)
 =(tempnum, %(tempnum, divisor))
 =(divisor, /(divisor, 10b))
 ELSEIF ==(tempchr, '#')
 =(tempdig, trunc_byte(/(tempnum, divisor)))
 =(tempdig, +(tempdig, '0'))
 IF <>(tempdig, '0')
 =(first, 0xffb)
 ENDIF

 IF first
 con_out_char(tempdig)

 ENDIF

 =(tempnum, %(tempnum, divisor))
 =(divisor, /(divisor, 10b))
 ELSE
 con_out_char(tempchr)

 ENDIF

 ++(hpointer)
 =(tempchr, ee_read(hpointer))
 LOOP
ENDFUN

A typical application for this sort of thing would be to display the output of a 12 bit ratiometric A/D
reading in volts. Rather than show the whole program, only a fragment which relates to this
discussion is shown. The variable ad_in is a word variable that contains the value read for an
LTC1298 12 bit A/D in a 5 volt system. This means that 0 is 0 volts and 4095 is 5 volts and all values
in between are assumed to be linearly related.

4 Simple Examples FBASIC TICkit

73 Protean Logic

 ; 12 bits can display three decimal points but needs 4 to
 ; completely hold the number. Therefore lets assign one to
 ; be the value 10000. To produce the number of volts from
 ; the value read we need to divide 5 times the reading by
 ; 4096.

 GLOBAL long conv_result

 =(conv_result, *(50000, ad_in))
 =(conv_result, /(conv_result, 4096))
 con_fmt(conv_result, "#.000X")
 con_string(" Volts")

4.12 Using the CCP Input to Measure a Pulse.
The TICkit has a pulse_in function which works very well for measuring pulses provided you know
when they are coming. The TICkit does not need to be doing anything else while it waits for the pulse
to occur. This generally is not the case in the real world. This next application demonstrates how the
CCP output can be used in conjunction with timer1 and some discrete logic to make a very precise
pulse measurement system that measures in background while the TICkit continues its other tasks.
The CCP output is configured for PWM output like in previous examples. This time, however, we are
not as interested in the duty cycle as the period. Lets say we are interested in pulses that are very fast
and we want a resolution of 1 microsecond. The oscillator on a 20MHz TICkit produces a period of
0.2 micro seconds. This means we want to divide this by a factor of 5 to produce a period of 1.0 micro
second. This is accomplished by loading the Timer2 period register with a value of 4. The CCP
register is loaded with 2 (for a 50% duty cycle) and the output on the CCP pin will be 1 MHz or have
a period of 0.1 us. We then gate this signal with an and gate and some trigger logic which feeds the
Tmr1 pin (pin_a0). Now reset the trigger circuit and examine the contents of timer1 as soon as it
remains constant at any value other than 0, we have measured a pulse. The contents of timer1 is the

FBASIC TICkit 4 Simple Examples

Protean Logic 74

count of micoseconds the pulse was high. The circuit for this follows:

The circuit for gating the time base uses two flip flops (special logic components that hold their state
until reset). The TICkit arms the circuit by bringing pin_a3 low and then high. The next rising edge
on U1-2clk will turn U1-2 on and allow the time base to get through to the input of timer1. As soon
as U1-2 turned on, U1-1 is clocked and turns on as well. Because the D input of U1-2 is connected to
/Q of U1-1, the next pulse on the signal will turn U1-2 off permanently before any of the time base
can be counted. So, at this point, the count in the TICkit's timer1 represents the amount of time that
the signal was high. The program for this circuit follows:

DEF tic62_c
LIB fbasic.lib

GLOBAL word last_count 0
GLOBAL byte count_done 0b

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 pin_low(pin_a2)
 tmr2_cont_set(tmr2_con_on)
 tmr2_period_set(4b) ; set for a period of 1.0 us
 ccp1_cont_set(ccp_pwm)
 ccp1_reg_set(2w) ; set for approx 50% dutycycle

 ; time base is now operational
 pin_low(pin_a3) ; reset trigger circuit
 tmr1_reg_set(0) ; clear timer1
 pin_high(pin_a3) ; arm the trigger circuit

4 Simple Examples FBASIC TICkit

75 Protean Logic

 ; pulse measurement circuit is now active
 REP
 IF <>(last_count, 0)
 IF ==(last_count, tmr1_reg_get())
 ++(count_done)
 ENDIF
 ENDIF

 ; do whatever during the body of the loop.
 ; timing is not critical.
 =(last_count, tmr1_reg_get())
 UNTIL count_done

 con_string("Pulse Width = ")
 con_out(last_count)
 con_string("us")
 REP
 debug_on()
 LOOP
ENDFUN

4.13 Using Timer1 to calculate RPM.
Measurement of RPM or the time between repetitive events is simple. In the last example, the
timebase could only be counted while the signal input was high and during the first cycle following
the rising edge of that signal. By eliminating one of the AND gates, the time base is counted durring
the entire first cycle following arming. By taking the reciperocal of the time, we have the RPM.
Doing the reciperocal requires a bit of mathematic manipulation, but nothing too hard for the TICkit.
First, the revised circuit:

FBASIC TICkit 4 Simple Examples

Protean Logic 76

The following program shows fixed point arithmetic used to scale the results for 1000 RPS (rotations
per second). Realistically, we should slow our time base, but this shows how sensitive this method can
be. We choose a scale where 1000000 represents the number 1.000000. When we divide 1 by the
number of microseconds the result is the number of millions of events that took place in one second.
Due to our scale, we can simply move our imagined decimal point to the right to see how many
thousands of events took place per second.

Use the con_fmt() function detailed earlier to display the scaled results on the debug console. The
result is shown in thousands of rotations per second with 2 decimal places of precision. Examine the
code to see how this is done:

DEF tic62_c
LIB fbasic.lib

GLOBAL word last_count 0
GLOBAL byte count_done 0b

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 pin_low(pin_a2)
 tmr2_cont_set(tmr2_con_on)
 tmr2_period_set(4b) ; set for a period of 1.0 us
 ccp1_cont_set(ccp_pwm)
 ccp1_reg_set(2w) ; set for approx 50% dutycycle

 ; time base is now operational
 pin_low(pin_a3) ; reset trigger circuit
 tmr1_reg_set(0) ; clear timer1
 pin_high(pin_a3) ; arm the trigger circuit

 ; pulse measurement circuit is now active
 REP
 IF <>(last_count, 0)
 IF ==(last_count, tmr1_reg_get())
 ++(count_done)
 ENDIF
 ENDIF

 ; do whatever during the body of the loop.
 ; timing is not critical.
 =(last_count, tmr1_reg_get())
 UNTIL count_done

 con_string("Pulse Width = ")
 con_out(last_count)
 con_string("us")

4 Simple Examples FBASIC TICkit

77 Protean Logic

 =(rps_result, /(1000000L, last_count))
 con_string("Thousands of Rotations Per Second = ")
 con_fmt(rps_result, "####.00X")
 REP
 debug_on()
 LOOP
ENDFUN

4.14 Interfacing to RS232 devices.
Another very common use for TICkit type processors is to "glue" together various electronic
instruments using RS232 format serial connections. Many such instruments are available as a result
of Marine use of GPS, Compas and LORAN. NEMA standards for communications as well as serial
interfaces for LCD displays and countless data acquisition instruments, make the RS232 format one
of the most essential controller interfaces.

Even though RS232 is so wide spread, it is a standard which was not initially intended for many of
the uses it now performs. This leads to a rather loose interpretation of the signal names and
meanings. Generally, the only standard part of the RS232 standard is the bit timing of the serial data
stream. The voltages, polarities, pin assignments, and connectors all vary by application. Therefore,
when we refer to RS232 in respect to the TICkit, we are refering to the bit timing of the stream. The
TICkit can produce TICkit output that is either intended for standard RS232 drivers like the MAX232
or 1489 driver ICs, or it can produce an open drain inverted output that can, in most cases, be
connected directly to RS232 sockets via a resistor.

The following diagrams illustrate RS232 timing and how inverted or non-inverted signals appear on
output pins.

There are 5 basic functions associated with serial communications on the TICkit. There are complex
functions are available that build on these functions.

The first functions are the rs_param_set() and rs_param_get() function. These two functions are used
to setup subsequent serial communcations. These functions set the baud rate, pin number for data, and
determine if the stream is inverted or not.

FBASIC TICkit 4 Simple Examples

Protean Logic 78

The third function is the rs_send() function. This function sends the specified byte out using the
format and pin set by the rs_param_set() function. The function, rs_break() can be used to send a byte
with a forced framing error, but this is seldom required. This is used for advanced serial protocols.

The fourth function is the rs_receive() function. This function receives a single byte of specified
format from the specified pin. This function can have a timeout or wait indefinately to receive a byte.
It also returns error information when an error in format is detected in the input stream. A special
control parameter allows a handshake pin to be used in addition to the data stream pin specified with
the rs_param_set() function.

The fifth function, rs_recblock() is similar to the rs_receive() function except that it can receive more
than one byte. This function also has the control parameter and can be instructed to ignore data until
a matching byte or a break is detected in the input stream. These special conditions can be useful
when creating a network of controllers that are linked by a shared serial line.

For this manual, we are only going to deal with serial transfer to and from a PC. We use a normal
communications program like WINTERM or PROCOMM to send and receive serial data over a
standard COM port. The cable we use is shown below. Also included are the standard pin
assignments for 9 and 25 pin PC connectors.

Pin Function DB9 DB25

Frame Ground - 1

Transmit data (TD) 3 2

Receive data (RD) 2 3

Request to Send (RTS) 7 4

Clear to Send (CTS) 8 5

Data Set Ready (DSR) 6 6

Signal Ground (SG) 5 7

Data Carrier Detect (DCD) 1 8

4 Simple Examples FBASIC TICkit

79 Protean Logic

Data Terminal Ready (DTR) 4 20

Ring Indicator (RI) 9 22

The demonstration program is as simple as the circuit. The program initializes the LCD display then
displays 20 characters it receives with the rs_receive() function. The the rs_send() function is used by
the rs_string() function to send a message to the PC saying, "send a block beginning with 'A'". At this
point, the program uses rs_recblock() to get a block of 10 characters which are prefaced with the
letter 'A'. When all 10 characters are received, the string is displayed on the LCD. The process is
repeated indefinately

DEF tic62_c
LIB fbasic.lib

; These defines used by the LCD libraries
DEF xbuss_mask 0y00100001b ; These are the address lines used
DEF lcd_data_reg 0y00100001b ; Address of data register
DEF lcd_cont_reg 0y00100000b ; Address of control register

LIB lcdinit4.lib
LIB lcdsend.lib
LIB lcdstrin.lib

FUNC none rs_string
 PARAM word in_string
 PARAM word temp_ptr
 PARAM word temp_chr
BEGIN
 =(temp_ptr, in_string)
 =(temp_chr, ee_read(temp_ptr))
 WHILE temp_chr
 rs_send(temp_chr)
 ++(temp_ptr)
 =(temp_chr, ee_read(temp_ptr))
 LOOP
ENDFUN

FBASIC TICkit 4 Simple Examples

Protean Logic 80

FUNC none main
 LOCAL byte in_count
 LOCAL byte temp_chr
 LOCAL byte in_array[10b]
BEGIN
 delay(500) ; delay 1/2 second
 lcd_init()
 rs_param_set(rs_invert | rs_9600 | pin_a3)
 =(in_count, 0b)
 REP
 lcd_data_wr(rs_receive(0b, 0b, 0b))
 ++(in_count)
 UNTIL ==(in_count, 20b)

 rs_param_set(rs_invert | rs_9600 | pin_a1)
 rs_string("Send a block beginning with 'A'")

 rs_param_set(rs_invert | rs_9600 | pin_a3)
 =(temp_chr, rs_recblock(0b, rs_cont_addr, 'A',~
 ~ in_array[0b], 10b)

 rs_param_set(rs_invert | rs_9600 | pin_a1)
 rs_string("Block was: ")
 =(in_count, 0b)
 REP
 rs_send(in_array[in_count])
 ++(in_count)
 UNTIL ==(in_count, 10b)

 reset()
ENDFUN

The PC's communication program must be set to the following settings: 9600 baud, the com port
number that the cable is plugged into, no handshake, 8 bits, no parity, 1 stop bit. Play with this
program and circuit to get a feel for how things work. Some people may find that when the TICkit
sends data nothing is received by the PC or possibly garbled data is received. This is because the
voltages generated by the TICkit are in the range of 0 to 5 volts. True RS232C states that the voltages
should range between +3 and +9 volts for a "space" (low) and -3 to -9 volts for a "mark" (high). The
following circuit accomplishes an official interface to a PC. The only program change required for
this circuit is to remove the "rs_invert" word from the rs_param_set function calls. The circuit for PC
communication, with conforming drivers is shown here.

4 Simple Examples FBASIC TICkit

81 Protean Logic

4.15 Using the RSB509 to Receive RS232 in Background.
In the previous example, you may notice that there are times when data sent to the TICkit from the
PC is lost or garbled. This is not caused by a driver problem like transmission in the other direction.
The cause for this problem is rooted in the fact that the rs_receive() and rs_recblock() functions are
RS232 emulations. This means that there is no internal hardware dedicated to monitoring the input.
The only time the pin is being monitored for RS232 input is while the function(s) is executing.
Therefore, for the time that the program is dealing with a received byte, it is not listening for the next
byte from the sender.

This problem can be solved in one of three ways. The first is to establish a special protocol so that the
PC, or whatever device is sending to the TICkit, transmits only when the TICkit is ready. An example
of such a protocol is used by the console functions and the debug program. This works well, but is
often not possible when using existing designs for transmitting. Another example is to use the
handshake lines in conjunction with the TICkit's receive functions. Unfortunately, very few RS232
sending devices monitor the handshake lines on a byte by byte basis. They typically assume that the
receiver can take a byte or two more even after the handshake line indicates busy. The only sure way
to receive an asynchronis data stream is to use dedicated receiving hardware.

Protean has created the RSB509 for this purpose. This 8 pin IC works with the TICkit's receive
functions, but buffers received data and only sends to the TICkit when signaled. The circuit for
interfacing to the RSB509 follows. Notice that only one general purpose I/O line is used to connect to
the RSB509. The TICkit sends a quick pulse out the interface pin to signal the RSB509 its readiness.
The RSB509 then sends one byte if it has buffered data to send.

FBASIC TICkit 4 Simple Examples

Protean Logic 82

The program fragment for this is shown below. This is similar to the previous example except that the
pulse protocol has been included for controlling the RSB509.

LIB rsb509b.lib

FUNC none main
 LOCAL byte in_count
 LOCAL byte temp_chr
 LOCAL byte in_array[10b]
 LOCAL byte in_err
BEGIN
 delay(500) ; delay 1/2 second
 lcd_init()
 rs_param_set(rs_invert | rs_9600 | pin_a3)
 pin_high(pin_a3)
 delay(10)
 =(temp_chr, pin_in(pin_a3)) ; end command pulse
 rs_send('A') ; program RSB509 for an A
 rs_send(rsb509_baud1) ; program for 9600
 delay(100) ; give RSB509 0.1 sec to reset

 =(in_count, 0b)
 REP
 pin_high(pin_a3) ; ask RSB509 for data
 =(temp_chr, rs_receive(0b, 0b, in_err))
 IF in_err
 ; no RSB data
 ELSE
 lcd_data_wr(temp_chr)
 ++(in_count)
 ENDIF
 UNTIL ==(in_count, 20b)

4 Simple Examples FBASIC TICkit

83 Protean Logic

 pin_high(pin_a3)
 delay(10)
 =(temp_chr, pin_in(pin_a3)) ; end command pulse
 rs_send('A') ; program RSB509 for an A
 rs_send(rsb509_baud1 | rsb509_addr) ; program for 9600
 delay(100) ; give RSB509 0.1 sec to reset

 rs_param_set(rs_invert | rs_9600 | pin_a1)
 rs_string("Send a block beginning with 'A'")

 rs_param_set(rs_invert | rs_9600 | pin_a3)
 =(in_count, 0b)
 REP
 pin_high(pin_a3) ; ask RSB509 for data
 =(in_array[in_count], rs_receive(0b, 0b, in_err))
 IF in_err
 ; no RSB data
 ELSE
 ++(in_count)
 ENDIF
 UNTIL ==(in_count, 10b)

 rs_param_set(rs_invert | rs_9600 | pin_a1)
 rs_string("Block was: ")
 =(in_count, 0b)
 REP
 rs_send(in_array[in_count])
 ++(in_count)
 UNTIL ==(in_count, 10b)

 reset()
ENDFUN

Notice that the rs_recblock function is eliminated and rs_receive() is used in the loop instead. This is
because the RSB509 performs the address detection and is, therefore, easier to interface using the byte
by byte method.

4.16 Example Summary
This concludes our examples section of the manual. This is the first manual printing to include this
chapter, so there may be errors. Please let Protean know if you find mistakes with the examples given.
All programs and circuits are based on working counterparts, but many examples in this book were
modifyed for simplicity and could contain simplification errors or transcription errors.

FBASIC TICkit 4 Simple Examples

Protean Logic 84

As you build these examples and design your own circuits keep in mind the following list of
suggestions. It might save you some time, aggravation, and money.

1. Whenever you apply power to a circuit for the first time, verify the power connections with
an ohm meter. Apply power briefly to check for shorts, hot components, or smoke. When you
are confident your circuit is not damaging itself, then power the circuit for extended periods.

2. When you have a design worked out, program all unused general purpose pins to be outputs.
Or, tie all unused inputs to either ground or +5 vdc. This prevents floating inputs from
oscillating internally and conserves power and reduces heat.

3. When debugging your program, make use of all the debugging tools. This means writing a
stack overflow routine so that the TICkit informs you in some way (A console message or
turning on an LED) that the TICkit's stack has been exceeded. Single step through your
program, or use the debug_on() function in areas of your program that may contain bugs and
trace through them. If an area of problem in your code must run at full speed, wire in extra
LEDs and temporarily modify your code to have it show via the LEDs what is happening.

4. Develop good revision techniques. This means putting comments at the beginning of your
program file every time you make a modification. Make a copy of your program every time
you start a new series of modifications so you can revert back to the last working version if

clear which modification is the source of the problem.
5. Use the Protean Web site and Email extensively. This is the most economical and effective

way to get support from Protean and the best way to get new ideas and learn about new ways
of solving old problems.

6. If it seems like the TICkit is just on the edge of being fast enough to accomplish a task,
consider putting some or all of that task into a dedicated peripheral IC. Often adding a few
dollars of silicon to a project saves tremendous costs in software development and product
support.

We hope these suggestions are helpful to you. Enjoy your TICkit. We always like to hear how our
customers are using our products, so send us an Email about your projects if you get a chance.

4 Simple Examples FBASIC TICkit

85 Protean Logic

5 FBASIC Keywords
5.1 Keywords; Are they commands or what?

Keywords are words that are the basic building blocks of a language. Unlike variables or function
names, they cannot be renamed or created by the programmer. This means they are the quintessential
character of the language.

In FBASIC, keywords are used to control compiling of source files, define other data symbols, define
procedure symbols, and to explain the flow control of the finished program. These groupings are
referred to as compile directives, definition or declaration directives, and flow control directives.
Statements, Commands and Directives are all synonymous terms in FBASIC. Keywords also inform
the compiler about specifics of the host processor like memory limitations or special internally
generated operations like array dereferencing.

The keywords of FBASIC are summarized in the four groupings that follow:

Compile directives:

ANOTE = places a note in the compiler output.
BREAK = places a break point in debugger symbol file.
WATCH = places a watch point in debegger symbol file.
KEYWORD = informs compiler that symbol is a keyword.
VECTOR = informs the compiler about an interupt vector.
DEFINE = assign a symbol to a textual meaning.
INCLUDE = compile a component source file at this point.
INTERNALS = inform compiler about internal token generation.
LIBRARY = compile a unique source file at this point.
MEMORY = inform compiler about memory limits.
IFDEFINED = affirmative conditional line in compilation.
IFNOTDEFINED = negative conditional compilation line.

Data Definition and Declaration directives:

SIZE = assigns a symbol to a physical data size.
TYPE = assigns a symbol a logical meaning of a data size.
GLOBAL = allocate RAM for a global variable.
LOCAL = allocate RAM for a local variable.
PARAMETER = define parameter for a FUNCTION or OPERATION.
ALIAS = rename a global RAM location as another symbol.
ALLOCATE = allocate EEprom space for data storage use.
INITIAL = define initial contents of an ALLOCATE.
RECORD = define a data structure block for an ALLOCATE.
SEQUENCE = defines a sequence for external structures.
FIELD = define a component field of a RECORD.
ENDRECORD = ends a RECORD block definition.

Procedural Declaration and Definition directives:

FBASIC TICkit 5 FBASIC Keywords

Protean Logic 86

FUNCTION = define a function block.
ENDFUNCTION = ends a FUNCTION block definition.
PROTOTYPE = Declares a function symbol with no procedure.
OPERATION = define an operation block.
ENDOPERATION = ends an OPERATION block definition.
EQUIVALENT = define a function to be equivalent to another.

Flow Control directives:

IF = mark the start of a conditional program path.
ELSEIF = mark the start of a alternate conditional path.
ELSE = mark the opposite condition program path.
ENDIF = mark the end of conditional program paths.
REPEAT = mark start of an unconditional loop construct.
WHILE = mark start of a loop and define the looping test.
UNTIL = mark end of a loop and define the exit test.
LOOP = mark end of an unconditional loop construct.
SKIP = define condition to skip to the end of a loop.
STOP = define condition to exit a loop.
CALL = calls another function. (default keyword)
EXIT = exit current function and return to calling function.
GOTO = execute at specified label.
GOSUB = execute at specified label and RETURN here.
RETURN = return to line following prior gosub.

Flow Control directives can only appear in special blocks called "procedure blocks". The blocking
concept is used by FBASIC to keep things neat in a source file. Procedure blocks are started using the
FUNCTION directive and end with the ENDFUN directive.

The other type of blocking structure in FBASIC is RECORD. This is used to collectively refer to a
group of data items by one symbolic name and assign the initial values to be contained in this group
when the program starts. This is useful for data storage applications such as lists.

Elements of a language that are not keywords are the standard libraries. Libraries are simply a set of
pre-written functions and definitions that are assumed to be useful to programmers in that language.
Library functions can be overridden by the programmer for any specific task. The standard libraries of
functions and data types for FBASIC are summarized later in this manual.

Detailed information on each keyword directive follows.

ALIAS

ALIAS: Alias declaration of internal RAM storage.

ALIAS <size_or_type> <variable_name> <overlay_name> (<overlay_offset>)

This directive is used outside of procedure blocks. Use this directive to refer to a previously allocated
RAM storage location by a name different than that used for the initial allocation. Use of aliases can

5 FBASIC Keywords FBASIC TICkit

87 Protean Logic

conserve RAM space in conditions where the programmer knows that there will be no conflict
between the two names for the location. ALIAS can also be used to overlay variables of smaller size
over a variable of larger size. This is useful for building up or deconstructing larger types. (This
syntax is dated, use the GLOBAL or LOCAL directives with the ALIAS option instead).

ALLOCATE

ALLOCATIONs: Used to reserve program memory locations

ALLOC(ATE) <initial_offset>
ALLOC(ATE) <size_type_or_record> <allocation_name> ('[' <count> ']')

This statement can only appear outside of procedure blocks. Allocate directs the compiler to reserve
sufficient program memory to store count items of the size given. The symbolic name will be a
constant that points to the first address of this reserved area. This is useful for symbolic representation
of stored data. The ALLOCATE directive can also be used to indicate to the compiler where to begin
the data storage in EEprom. Normally the compiler places all allocations and strings immediately
following the program code in the EEPROM. The initial offset form of ALLOCATE can be used to
force the storage to begin at a different location. This can be useful if part of the EEPROM is write
protected.

See RECORD and FIELD for more information on structures in EEPROM

SEQUENCE is a similar directive but does not effect EEPROM allocation at all. Use SEQUENCE
instead of ALLOCATE if symbolic addresses are being assigned to memory other than the EEPROM
of the TICkit.

ANOTE

ANOTEs: Used to place text in the compiler output

ANOTE <any single line of text>

This statement can only appear outside procedure blocks. ANOTE directs the compiler to place the
following text in the status output of the compiler. This action has no effect on the output token file.
This directive can be used to indicate which libraries or include files are compiled for any given
program.

BREAK

BREAKs: Used to indicate a default break point to the debugger

BREAK <any procedural keyword and statement>

This statement can only appear inside procedure blocks. BREAK directs the compiler to place a break
point symbol in the symbol file. This action has no effect on the output token file, but instructs the

FBASIC TICkit 5 FBASIC Keywords

Protean Logic 88

debugger that this line is a break point when the debugger starts. Only the first 10 default break
points can be recognized by the debugger.

CALL

CALL: Evaluates an expression.

(CALL) <expression_with_no_return_value>

This statement is procedural and can appear only after the BEGIN statement in a procedure block.
The CALL keyword is optional because any first word on a line which is not a keyword will be
interpreted as a CALL statement. This statement will cause the following expression, of SIZE none,
to be evaluated. If the first function or operation of the expression has a return value, an error will be
returned.

DEFINITION

DEFINITIONS: Textual equates in the source code.

DEF(INITION) <symbol_name> <any_text>

This directive is valid anywhere, but is a global equate only when it appears outside a procedure
block. This is used to make code more readable and to eliminate arcane numeric references.
DEFINED symbols can also be used to conditionally compile certain sections of a program. See
IFDEFINED and IFNOTDEFINED for more details on conditional compilation.

EQUIVALENT

EQUIVALENT: Defines a function prototype that uses a procedural section of an existing function

FUNC(TION) <size_or_type> <function_name>
parameters....
locals...

EQUIV(ALENT) <existing_function_name>

This directive is not currently implemented for the TICkit57 and TICkit62. The Equivalent directive
is used when special versions of existing functions are required that use more specific parameter and
return value types.

EXIT

EXITs: Returns to the line CALLing function.

EXIT

5 FBASIC Keywords FBASIC TICkit

89 Protean Logic

This statement can only appear within a procedural block. EXIT will cause the execution to resume at
a point immediately following the reference to the function that EXIT appears in. If the function has a
return value, the value contained in the variable "exit_value" will be passed back to the calling
reference as the value of the function. Therefore, to return a value for a function, assign the desired
return value to the variable "exit_value" immediately before executing an EXIT statement. An
implicit EXIT occurs whenever ENDFUNCTION is encountered.

FIELD

FIELDs: Defines subordinate elements of a RECORD or ALLOCATION.

FIELD <type_or_record> <symbol_name> ('[' <count> ']')

This directive is used in RECORD blocks to define data elements inside the larger structure. The
"count" is optionally used to make an array out of the field. The default count is one.

FUNCTION

FUNCTIONs: External function code definition.

FUNC(TION) <size_or_type> <function_name>
parameters....
locals...

BEGIN
procedural statements....

ENDFUN(CTION)

This directive can only be used outside of procedure blocks and defines a function. Any
PARAMETERs, LOCALs, and DEFINEs defined within the FUNCTION block are only defined to
procedure statements within that FUNCTION block. If the function has a return value, a local
variable called "exit_value" of the function's type will exist for the duration of the function. Assign
the desired return value "exit_value" immediately before EXIT or ENDFUNCTION.

GLOBAL

GLOBALs: Global internal RAM storage allocation.

GLOBAL <size_or_type> <variable_name> ('[' <count> ']') (<initial_value(s)>)
 or
GLOBAL <size_or_type> <variable_name> ALIAS <variable_name> (<offset>)

This directive is used outside of procedure blocks. This directive allocates Global data from the
bottom of memory as opposed to the internal RAM stack which grows down from the top of memory.
Therefore, usage of global values reduces the available stack for subroutines and local values.
Because local allocations are returned to the RAM pool after a function finishes executing, local
variables are often more memory efficient than global values. Global values execute faster however,

FBASIC TICkit 5 FBASIC Keywords

Protean Logic 90

and may even be more space efficient if the variable can be safely re-used in multiple functions. An
array of elements can be defined by using the '[]' characters and an element count. Exercise care when
defining arrays not to exceed the memory capacity of the device. The "WATCH" directive may be
used at the beginning of a GLOBAL statement to place a watch point symbol in the symbol file. Upon
startup, the debugger will automatically watch up to five GLOBAL values with WATCH directives.

The ALIAS option can be used to make the defined variable overlay an existing variable. This can
prove useful for building up larger types or for creating special combined types.

GOSUB

GOSUB: Executes a sub-section of a function as a sub-routine.

(GOSUB) <local_line_label>

This statement is procedural and can appear only after the BEGIN statement in a procedure block.
Program execution will shift to the line beginning with a label that matches "local_line_label". This
line must be in the same function as the GOSUB. Execution continues from that line until a RETURN
statement is encountered, and resumes immediately following the last GOSUB statement executed.
Care must be exercised when using GOSUB. If GOSUB and RETURN are not matched properly, the
program's stack could be destroyed, leading to unpredictable results. The preferred method for
performing subroutines within FBASIC is to use multiple functions with CALL statements.

GOTO

GOTO: Causes the flow of the program to alter.

GOTO <local_line_label>

This statement is procedural and can appear only after the BEGIN statement in a procedure block.
This directive causes execution within the program to jump to the location specified by
"local_line_label". The line_label must be in the same procedure block as the GOTO.

IF

IFs: Creates alternations and branches in the program flow.

IF <logical_expression>
procedural statements....

(ELSE or ELSEIF <logical_expression>)
procedural statements....

ENDIF

The IF statement is procedural and can only appear after the BEGIN statement in a
procedural block. Use this directive to change the flow of a program based on a condition, usually a

5 FBASIC Keywords FBASIC TICkit

91 Protean Logic

variable comparison. The ELSE or ELSEIF are optional extensions to this directive. This directive
can be lexically nested.

IFDEFINED

IFDEFINEDs: Conditionally compile a line.

IFDEF[INED] <define_symbol> [any other directive]

The IFDEF statement is a compiler directive that and can appear anywhere. The directive which
follows on the same line as the IFDEF will only be executed if the referenced <define_symbol> exists.
If the symbol does not exist, the line will not be compiled. This line can be used in conjunction with
the INCLUDE or LIBRARY directives to conditionally compile large sections of a program.

IFNOTDEFINED

IFNOTDEFINEDs: Conditionally compile a line.

IFN[OT]DEF[INED] <define_symbol> [any other directive]

The IFNOTDEFINED statement is a compiler directive and can appear anywhere. The directive
which follows on the same line as the IFNOTDEFINED will only be executed if the referenced
<define_symbol> does not exist. If the symbol exists, the line will not be compiled. This line can be
used in conjunction with the INCLUDE or LIBRARY directives to conditionally compile large
sections of a program.

INCLUDE

INCLUDEs: Compile directive to include a subordinate file at this point.

INCLUDE <source_file_name>

The INCLUDE directive is used to merge another source file in the compilation of the program. This
is useful when organizing large programs or for special methods of repeating code in a program. The
INCLUDE directive differs from the LIBRARY directive in that the file will be included regardless of
whether or not the file was included in the compile previously. Using INCLUDE with IFDEFINED
and IFNOTDEFINED statements creates a powerful conditional compilation capability.

INITIAL

INITIALs: Set an initial value for EEprom Allocations.

INIT(IAL) <full_field_name> <initial_value> (<additional_values>...)

The INITIAL statement is used to place initial values into EEprom allocations. This can be very
useful for creating tables, etc. The "full_field_name" must include the name of the allocation, all

FBASIC TICkit 5 FBASIC Keywords

Protean Logic 92

records, and the field name to completely identify the field. At least one initial value is required. If
the field has a count greater than one, then additional initial values may be included up to the count
of the field. For byte type field, the special constant format ' ' may be used to specify a string of initial
values. This format differs from the " " constant format which evaluates to a word. The ' ' format
evaluates to multiple bytes.

INTERNALS

INTERNALS: Species token code for internal operatoins

INTERNALS <token codes> ...

This directive appears only in the token library for the TICkit interpreter. The list of tokens instructs
the compiler how to generate array dereferences and other token references generated automatically
by the expression generator.

KEYWORD

KEYWORDs: This directive is used to inform the compiler that a symbol is reserved.

KEYWORD <reserved_symbol>

This directive appears only in the "fbasic.lib". A user may wish to use this directive to reserve
symbols that will eventually appear in a program. Normally, this directive will not be used except in
the standard library.

LIBRARY

LIBRARY: Textually included source code.

LIB(RARY) <file_name>

This directive is valid anywhere in the body of the code, but use in the beginning of a program aids
readability. The "filename" is the DOS text file which is to be included in the compile at this point in
the source. LIBRARY and INCLUDE differ only in the case that a file name is used that has
previously been used in the same compile. LIBRARY will ignore a the request if a file_name appears
twice. INCLUDE will process the file regardless of whether or not it had appeared in the compile
previously.

LOCAL

LOCALs: Local internal RAM storage allocation.

LOCAL <size_or_type> <variable_name> ('[' <count> ']') (<initial_value(s)>)
 or
LOCAL <size_or_type> < variable_name> ALIAS <variable_name> (<offset>)

5 FBASIC Keywords FBASIC TICkit

93 Protean Logic

This directive is used inside of program blocks prior to the BEGIN statement. This directive allocates
LOCAL data from the bottom of memory. A pointer to that memory location is placed on the internal
RAM stack which grows down from the top of memory. Because local allocations are returned to the
RAM pool after a function finishes executing, local variables are often more memory efficient than
global values. Global values execute faster however, and may even be more space efficient if the
variable can be safely re-used in multiple functions, possibly using the ALIAS statement. Arrays of
LOCAL variables can be defined by using the '[]' characters and an element count. Take care not to
exceed the stack space of the device when allocating arrays. LOCAL values exist only while the
program is executing, for this reason, current debugger implementations are not able to watch or
examine LOCAL values by symbol name.

The ALIAS option can be used to make the defined variable overlay an existing variable. This can
prove useful for building up larger types or for creating special combined types.

MEMORY

MEMORY: Specify memory constraints for a host processor

MEMORY HIGH <upper RAM limit>
MEMORY LOW <lower RAM limit >
MEMORY EEPROM <sequence breaks in EEprom>

This directive usually appears in the token library for a device. It tells the compiler how to assign
global memory and when to generate warnings about EEprom sequence breaks. The values of these
limits are defined by the version of the TICkit token interpretter and the type of size of each EEprom
connected to it.

OPERATION

OPERATIONs: Internal operation code definition.

OPER(ATION) <size_or_type> <operation_name>
parameters....

BEGIN hexadecimal values....
ENDOP(ERATION)

This directive can only appear outside of code blocks and informs the compiler of internally
implemented functions. These functions are identical to source level functions except that they
operate faster and must be implemented in the token interpreter.

PARAMETER

Parameters: Define the parameter list and symbolic argument names for functions or operations.

PARAM(ETER) <size_or_type> <argument_name>

FBASIC TICkit 5 FBASIC Keywords

Protean Logic 94

This directive can only be used inside of procedure blocks between the OPERATION or FUNCTION
directive and the BEGIN directive. PARAMETERs inform the compiler how to handle the argument
or parameter list for the FUNCTION or operation in which they appear. PARAMETERs also assign a
symbolic name to the argument so that they may be used indirectly by the FUNCTION in which they
appear. PARAMETERs are temporary names that pointer to the variables used in the function call.

PROTOTYPE

PROTOTYPEs: Declare a function without creating the procedure.

FUNC[TION] <return_type> <function_name>
parameters...

PROTO[TYPE]

The PROTOTYPE directive is used to define a function symbol without actually defining the
procedure associated with the function. This is useful when doing recursive applications, or any other
time that a function will be referenced before it is defined. The FBASIC single pass compiler
characteristic requires that programs be written in a "top down" style. The use of PROTOTYPES for
all functions in a program frees the programmer from the "top down" requirement.

RECORD

RECORDs: Used for making symbolic maps of external memory allocations

REC(ORD) <record_name>
fields....

ENDREC(ORD)

This block can only appear outside of a procedure block. Record blocks are used to declare relative
locations of items logically grouped in EEprom memory, or other memory areas. The structures can
not be nested, but may lexically recurs. The defined structures can then be declared using the
ALLOCATE statement, which actually reserves program space for the records. When a record symbol
appears in an expression, it evaluates to a constant of SIZE "word_size". This constant can then be
manipulated as a pointer to any sort of memory device.

5 FBASIC Keywords FBASIC TICkit

95 Protean Logic

REPEAT

REPEATs: Marks the beginning of a loop with no looping condition.

REPEAT
procedural statements....

(STOP)
procedural statements....

(SKIP)
procedural statements....

UNTIL <logical_expression> or LOOP

This directive causes the enclosed block to repeat while the repeat_condition is true or until the
exit_condition is true. The STOP directive will exit the body of the loop and the SKIP directive will
cause the loop to perform the next iteration without finishing the body of the loop by skipping to the
statement at the bottom of the block. Looping directives can be lexically nested.

RETURN

RETURNs: Returns to the line immediately following the last GOSUB.

RETURN

This statement can only appear within a procedural block. RETURN will cause the execution to
resume at a point immediately following the last GOSUB that was executed. Because return addresses
are stored on the stack by the GOSUB statement, and removed by the RETURN statement. The
number of RETURNs executed in a function must exactly match the number of GOSUBs executed in
a function.

SEQUENCE

SEQUENCEs: Establish a sequence for external storage.

SEQ(UENCE) <sequence_number> <initial offset>
SEQ(UENCE) <sequence_number> <size, type or record> ~
 ~ <symbol_name> ('[' <count> ']')

This statement can only appear outside of procedural blocks. SEQUENCE is used to establish either a
beginning offset for a given sequence number or to indicate the location of a storage element or array
at the current offset for the sequence number. The offset is increased to the first byte past the storage
required if a storage element or array is referenced. SEQUENCE is very similar to ALLOCATE
except that it does not effect the EEPROM allocation and that there can be more than one sequence
for a program. Up to 10 sequences, each uniquely identified by a sequence number, can be used for a
program in this version of the FBASIC compiler.

<count> is used to create an array for the <symbol_name> at the current sequence offset.

FBASIC TICkit 5 FBASIC Keywords

Protean Logic 96

SIZE

SIZEs: Define a symbol to one of the intrinsic data sizes of the compiler.

SIZE <size_symbol> <number_of_type_size>

This directive appears in the "fbasic.lib" file. This directive is used to assign a symbol which is easier
to remember and more concise than the numbers that the compiler recognizes for size designators.
The default sizes are: none, byte, word, and long. None uses no storage, byte uses one 8 bit location,
word uses two 8 bit locations, and long uses four 8 bit locations. Only long is arithmetically signed.

TYPE

TYPEs: Define a logical meaning to a data size.

TYPE <symbolic_meaning> <size_symbol>

This directive, which is similar to the SIZE directive, is used to more loosely assign a meaning to a
data item. The symbolic meaning does not override the SIZE of the data item but will prevent another
data item which has a different symbolic meaning from being assigned to this data item. By using
these restricting measures, the compiler can prevent an accidental misuse of data items of the same
physical size, but different logical meanings.

VECTOR

VECTORs: Infrom the Compiler about hardware Interrupt Vectors in TICkit memory. Vectors are
attributes of the Microprocessor and the Interpreter firmware.

VECTOR <symbolic_name>

This directive appears only in the standard token library. Each use of the VECTOR statement defines
a function name to be associated with the physical vector of the processor and the processor firmware.
The first VECTOR directive assignes the first vector slot. Each subsequent appearance of the
VECTOR directive assigns subsequent vector memory locations.

WATCH

WATCHs: Marks data element as a watch point in subsequent debugging sessions

WATCH GLOBAL <type> <symbol_name> (<initial_value>)

The WATCH directive is used to place a symbol in the watchpoint list of the debugger. Using this
directive may save time when debugging more complex programs. Only global values can be watched
by the debugger in current versions.

5 FBASIC Keywords FBASIC TICkit

97 Protean Logic

WHILE

WHILEs: Marks the beginning of a loop with a condition to loop.

WHILE <logical_expression>
procedural statements....

(STOP)
procedural statements....

(SKIP)
procedural statements....

UNTIL <logical_expression> or LOOP

This directive causes the enclosed block to repeat while the repeat_condition is true or until the
exit_condition is true. The STOP directive will exit the body of the loop and the SKIP directive will
cause the remainder of loop to be omitted by skipping to the statement at the bottom of the loop.
Looping directives can be lexically nested.

FBASIC TICkit 5 FBASIC Keywords

Protean Logic 98

6 Standard Function Library
6.1 Standard Libraries: "....What do they contain, Books?"
A programming language like FBASIC is very lean. It contains only the basic building blocks of
programs, but very few functional parts. The standard library provides most of the functinality of
FBSIC. The standard library is a set of functions, operations, definitions, and declarations. The
standard library contains things like math functions, input and output functions, bit manipulation, etc.

Physically, the standard library is a collection of program fragments the author of the language
assumes are useful to the programmer. The programmer can call functions from the standard library
that are required for a larger application. Also, the programmer may decide that certain functions of
the standard library are inappropriate or unnecessary for a given application. For this reason, the
library is broken down into smaller library files and organized in a sort of hierarchy where library
files depend on functions in other files to get the job done. The programmer must determine which
library files to reference in his program in order to make an efficient program.

Normally, the programmer will use a define statement and the FBASIC.LIB file to include the
appropriate standard library for the processor revision being used. Therefore, the following two lines
usually appear as the first directives of a program:

DEF tic62_a
LIB fbasic.lib

As mentioned above, a programmer may wish to have greater control over which elements of the
standard library are included in a program. When this is the case, the programmer must pick and
choose elements from the library files. This is easy to do since each library file can be examined and
modified with a text editor.

The standard library also includes a reference to extended functions not in the firmware of the
processor. To exclude these libraries from your program use the following define before the reference
to fbasic.lib

DEF tic62_a
DEF operations_only
LIB fbasic.lib

6 Standard Library FBASIC TICkit

99 Protean Logic

6.2 Standard Library Summary
The following sections of the manual divide the functions of the standard library according to
function groups. The group headings are:

1. Assignment and size conversion functions
2. Mathematical Functions
3. Bit manipulation functions
4. Logical relational test functions
5. Input and output functions
6. EEprom read and write functions
7. IIC peripheral funtions
8. Parallel Buss (LCD) functions
9. Timing and Counting Functions

10. RS232 functions
11. Console functions
12. System, interrupt and miscellaneous functions
13. Integrated peripheral functions

Library organization is as follow. Notice that including fbasic.lib automatically includes the proper
token library and the proper token extension library. You need to explicitly include any other library
(like rs_fmt.lib) if you want the functions in it. Simply add LIB rs_fmt.lib into your program before
you reference any functions of that library. Also be aware of any DEF statements that the library may
expect. All libraries can be viewed with a text editor.

fbasic.lib = FBASIC keyword and size declaration.
token.lib (tic62c.lib) = token interpreter operation declarations.
 tokext.lib (ticx62c.lib) = Extension functions. Use DEF opertions_only to exclude.

ee.lib = larger size EEprom functions
rs232.lib = rs232 string and numeric functions

rsstring.lib = send a null terminated string
rsbyte.lib = byte to string of numbers
rsword.lib = word to string of numbers
rslong.lib = long to string of numbers
rsfmt.lib = formatted long to string of numbers

con.lib = consolse string and number functions
constrin.lib = send a null terminated string
conbyte.lib = byte to string of numbers
conword.lib = word to string of numbers
conlong.lib = long to string of numbers
confmt.lib = formatted long to string of numbers

lcd.lib = LCD buss functions for controlling HD44780 based LCD modules
lcdinit.lib = initialize the LCD and buss

FBASIC TICkit 6 Standard Library

Protean Logic 100

lcdstrin.lib = send a null terminated string
lcdbyte.lib = byte to string of numbers
lcdword.lib = word to string of numbers
lcdlong.lib = long to string of numbers
lcdfmt.lib = formatted long to string of numbers
lcdchar.lib = character generator programming function
lcdscroll.lib = scrolling routines to make an LCD look like a terminal

6.3 Additional Libraries Summary
When an additional library is included, the minimum size of your program increases because all
functions referenced in the extend library are put into your program whether you use them or not.
Usually, you use the extend library when you want to develop a program quickly.,.

Various libraries may be placed on release disks. These libraries are often hardware dependent. Other
extended libraries can be found on the Protean BBS. Libraries for serial A/D chips and serial clock
chips are a few examples. You can use a simple text editor to view these library files. Notes on their
use will be contained as comments in the library files. Do not be intimidated by library files, they are
simply small functions and provide a nice way to increase the number of tools available to you. Every
time you write a function for dealing with a specific type of hardware device or any time you develop
a section of code you think you will re-use, put that function into a library file so you can access it
easily in future programs.

6.4 Assignment and Size Conversion Functions
Assignment is the most basic of programing functions. The contents of one memory variable or
constant is copied into another memory variable. The truncate functions simply drop bytes of higher
order than the result requires. This is, in essence, a modulus function of either 256 or 65536. The
to_xxx functions append 0 value bytes to the higher order bytes of the result. The return value of
to_xxx functions have the same numeric value as the argument only in a larger variable size.

= Assignment
none =(byte dest, byte source) token.lib
none =(word dest, word source) token.lib
none =(long dest, long source) token.lib

Multi-precision assignment function. The contents of the source value is copied into the
destination.

trunc_byte Truncates a larger size to a byte
byte trunc_byte(long arg) token.lib
byte trunc_byte(word arg) token.lib

Truncates the argument to a byte size. Any information in the more significant bytes is
discarded.

6 Standard Library FBASIC TICkit

101 Protean Logic

trunc_word Truncates a larger size to a word
word trunc_word(long arg) token.lib

Truncates the argument to a word size. Any information in the more significant bytes is
discarded.

to_word Extends a smaller size to a word
word to_word(byte arg) token.lib

Extends the argument to a word size by placing zeros in the more significant bytes.

to_long Extends an (argument) to long size
long to_long(byte arg) token.lib
long to_long(word arg) token.lib

Extends the argument to a long size by placing zeros in the more significant bytes.
Conversion Function Examples:

; determine the most significant Hex digit of a word

FUNCTION none main
 LOCAL word in_val 10000
 LOCAL byte char_val
BEGIN
 =(char_val, trunc_byte (/(in_val, 4096)))
 IF >(char_val, 9)
 =(char_val, +(char_val, '0'))
 ELSE
 =(char_val, +(char_val, - ('A', 10b)))
 ENDIF

 con_out_char (char_val)
ENDFUN

6.5 Mathematical Functions
The mathematical functions are used to perform arithmetic in FBASIC. The mathematics functions
can be viewed as a "prefix" notation for expressions. In expressions where order is significant, like
subtraction and division, The first argument is the value that is operated on, while the second
argument is the value of the operation. In division then, the first argument is the numerator and the
second argument is the denominator and the value returned is the quotient.

FBASIC TICkit 6 Standard Library

Protean Logic 102

+ Arithmetic Sum
byte +(byte arg1, byte arg2) token.lib
word +(word arg1, word arg2) token.lib
word +(byte arg1, word arg2) token.lib
word +(word arg1, byte arg2) token.lib
long +(long arg1, long arg2) token.lib
long +(long arg1, word arg2) token.lib
long +(long arg1, byte arg2) token.lib
long +(word arg1, long arg2) token.lib
long +(byte arg1, long arg2) token.lib

Multi-precision addition function. Two arguments are added together. The result is returned
as the value of the function.

++ Increment by One
byte ++(byte arg) token.lib
word ++(word arg) token.lib
long ++(long arg) math32.lib

Multi-precision increment single argument. The return value of the function is one plus the
argument value.

- Arithmetic Difference
byte -(byte arg1, byte arg2) token.lib
word -(word arg1, word arg2) token.lib
word -(byte arg1, word arg2) token.lib
word -(word arg1, byte arg2) token.lib
long -(long arg1, long arg2) token.lib
long -(long arg1, word arg2) token.lib
long -(long arg1, byte arg2) token.lib
long -(word arg1, long arg2) token.lib
long -(byte arg1, long arg2) token.lib

Multi-precision subtraction function. The result of arg1 less arg2 is returned as the value of
the function.

- Arithmetic Inverse (change sign)
long -(long arg) math32.lib

Change sign function. The complement of arg is returned as the value of the function.

-- Decrement by One
byte --(byte arg) token.lib
word --(word arg) token.lib
long --(long arg) math32.lib

Multi-precision decrement single argument. The return value of the function is the argument
value less one.

6 Standard Library FBASIC TICkit

103 Protean Logic

* Arithmetic Product
byte *(byte arg1, byte arg2) token.lib
word *(word arg1, word arg2) token.lib
word *(byte arg1, word arg2) token.lib
word *(word arg1, byte arg2) token.lib
long *(long arg1, long arg2) token.lib
long *(long arg1, word arg2) token.lib
long *(long arg1, byte arg2) token.lib
long *(word arg1, long arg2) token.lib
long *(byte arg1, long arg2) token.lib

Multi-precision multiplication function. The result of arg1 multiplied by arg2 is returned as
the value of the function.

/ Arithmetic Division
byte /(byte arg1, byte arg2) token.lib
word /(word arg1, word arg2) token.lib
word /(byte arg1, word arg2) token.lib
word /(word arg1, byte arg2) token.lib
long /(long arg1, long arg2) token.lib
long /(long arg1, word arg2) token.lib
long /(long arg1, byte arg2) token.lib
long /(word arg1, long arg2) token.lib
long /(byte arg1, long arg2) token.lib

Multi-precision division function. The result of arg1 divided by arg2 is returned as the value
of the function.

% Arithmetic Modulus (Remainder)
byte %(byte arg1, byte arg2) token.lib
word %(word arg1, word arg2) token.lib
byte %(byte arg1, word arg2) token.lib
word %(word arg1, byte arg2) token.lib
long %(long arg1, long arg2) token.lib
long %(long arg1, word arg2) token.lib
long %(long arg1, byte arg2) token.lib
word %(word arg1, long arg2) token.lib
byte %(byte arg1, long arg2) token.lib

Multi-precision remainder function. The remainder of arg1 divided by arg2 is returned as the
value of the function. For 32 bit functions, the sign follows that of arg1.

array_byte Calculate Address of a byte array element
word array_byte(word offset, word index) token.lib

This function returns a word value which is the address of an element of an array which
starts at "offset" and which is the "index" numbered element.

FBASIC TICkit 6 Standard Library

Protean Logic 104

array_word Calculate Address of a word array element
word array_word(word offset, word index) token.lib

This function returns a word value which is the address of an element of an array which
starts at "offset" and which is the "index" numbered element.

array_long Calculate Address of a long array element
word array_long(word offset, word index) token.lib

This function returns a word value which is the address of an element of an array which
starts at "offset" and which is the "index" numbered element.

array_size Calculate Address of an array element
word array_size(word offset, word size, word index) token.lib

This function returns a word value which is the address of an element of an array which
starts at "offset" and which is the "index" numbered element. All elements in the array are
assumed to be of "size" number of bytes.

Mathematics Function Examples:

; program to count the numbers from 100 to 2000 by 10
FUNCTION none main
 LOCAL word cnt_val
BEGIN
 rs_param_set (debug_pin) ; setup console to use

; the same connection as
; the debugger

 =(cnt_val, 100) ; set count value to 100
 REP
 con_out (cnt_val)
 =(cnt_val, + (cnt_val, 10))
 UNTIL >(cnt_val, 2000)
ENDFUN

6.6 Bit Manipulation Functions
The bit manipulation functions work on byte values only. Each bit of the arguments have the function
performed on them. For example, an "AND" function is really 8 AND functions where the result of
each of the AND operations is placed in the 8 bits of the return value of the function. These functions
are usually used for masking out specific bits for test or combination from bytes and words. Logical
functions are typically used as conjunctions for comparative functions (==,>,<). Logical functions are
only available for byte types.

6 Standard Library FBASIC TICkit

105 Protean Logic

b_and 8 and 16 bit Bitwise logical and function
byte b_and(byte arg1, byte arg2) token.lib
word b_and(word arg1, word arg2) token.lib

The result is the bit by bit AND of arguments one and two. The 8 bit version of this function
can also be used as a logical AND but the and() function is recommended for logical
conjunction.

b_or 8 or 16 bit Bitwise logical OR function
byte b_or(byte arg1, byte arg2) token.lib
word b_or(word arg1, word arg2) token.lib

The result is the bit by bit OR of arguments one and two.

b_xor 8 or 16 bit Bitwise logical exclusive or function
byte b_xor(byte arg1, byte arg2) token.lib
word b_xor(word arg1, word arg2) token.lib

The result is the bit by bit EXCLUSIVE-OR of arguments one and two.

b_not 8 or 16 bit Bitwise logical complement function
byte b_not(byte arg) token.lib
word b_not(word arg) token.lib

The result if the bit by bit NOT of the argument. Therefor, all bits that are 1 in the argument
are returned as 0 and vice versa.

>> 8 and 16 bit arithmetic shift argument to the right
byte >>(byte arg) token.lib
word >>(word arg) token.lib

All bits of the argument are shifted toward bit 0. The least significant bit is discarded as a
result and zero is placed in msb.

<< 8 and 16 bit arithmetic shift argument to the left
byte <<(byte arg) token.lib
word <<(word arg) token.lib

All bits of the argument are shifted toward the msb. The most significant bit is therefore,
discarded. 0 is placed in the LSB.

b_set Set bits in an 8 or 16 bit field by mask
none b_set(byte field, byte mask) tokext.lib
none b_set(word field, word mask) tokext.lib

Bits are set in the field argument on the basis of which bits are set in the mask. Any bits
which are set in the mask will be set in the field argument. Bits in the mask which are zero,
will leave the cooresponing bits in the field argument unchanged. These functions are useful
for conserving space by using bits as boolean flags.

FBASIC TICkit 6 Standard Library

Protean Logic 106

b_clear Clear bits in an 8 or 16 bit field by mask
none b_clear(byte field, byte mask) tokext.lib
none b_clear(word field, word mask) tokext.lib

Bits are cleared in the field argument on the bsis of which bits are set in the mask. Any bits
which are set in the mask will be set in the field argument. Bits in the mask which are zero,
will leave the cooresponding bits in the field argument unchanged.

b_test Tests bits in an 8 or 16 bit field by mask
byte b_test(byte field, byte mask) tokext.lib
byte b_test(word field, word mask) tokext.lib

This function tests specific bits in a field. If any of the bits specified by the mask are set in
the field 0xffb is returned. If all the specified bits are zero, the function returns 0b. This is a
convenient way to test bits used as boolean flags.

Bitwise Function Examples:

; Routine to read data from a ADC0831 A/D chip

FUNCTION byte ad_read ; 'Returns a byte'
 LOCAL byte count 0b ; a Byte counter
BEGIN
 pin_low(clk) ; make pin an output,
 ; needed when sharing buss
 pin_low (cs) ; enable chip
 pulse_out_high (clk,10w) ; toggle clk to get start bit
 REPEAT
 pulse_out_high(clk,10w) ; toggle clk to get bits
 =(exit_value,<<(exit_value)) ; shift bits
 =(exit_value, ~
 ~b_or(exit_value , ~
 ~b_and (pin_in (data),1b)))
 ; mask bit and add to data
 ++(count)
 UNTIL ==(count,8b)

 pin_low(data) ; return bus data line to output
 pin_high(cs) ; disable chip
ENDFUN

6.7 Logical And Relational Test Functions
Logical relational functions are used in conditional flow control expressions, like IF or WHILE.
Relational functions return 255 (0xff) if the two arguments meet the relational condition, or 0 if they
do not. The bitwise combination logic functions, "and", "or", "not", and "xor" can be used with these
functions provided all true values in the expression have all bits set (0xff).

6 Standard Library FBASIC TICkit

107 Protean Logic

== Multi-precision relational test for equal
byte ==(byte arg1, byte arg2) token.lib
byte ==(byte arg1, word arg2) token.lib
byte ==(byte arg1, long arg2) token.lib
byte ==(word arg1, byte arg2) token.lib
byte ==(word arg1, word arg2) token.lib
byte ==(word arg1, long arg2) token.lib
byte ==(long arg1, byte arg2) token.lib
byte ==(long arg1, word arg2) token.lib
byte ==(long arg1, long arg2) token.lib

If the result of arg1 less arg2 is equal to zero, 0xff is returned. Otherwise, a 0 is returned as
the value of the test.

>= Multi-precision rel. test for greater than or equal
byte >=(byte arg1, byte arg2) token.lib
byte >=(byte arg1, word arg2) token.lib
byte >=(byte arg1, long arg2) token.lib
byte >=(word arg1, byte arg2) token.lib
byte >=(word arg1, word arg2) token.lib
byte >=(word arg1, long arg2) token.lib
byte >=(long arg1, byte arg2) token.lib
byte >=(long arg1, word arg2) token.lib
byte >=(long arg1, long arg2) token.lib

If the result of arg1 less arg2 is greater than or equal to zero, 0xff is returned. Otherwise, a 0
is returned as the value of the test.

<= Multi-precision relational test for less than or equal
byte <=(byte arg1, byte arg2) token.lib
byte <=(byte arg1, word arg2) token.lib
byte <=(byte arg1, long arg2) token.lib
byte <=(word arg1, byte arg2) token.lib
byte <=(word arg1, word arg2) token.lib
byte <=(word arg1, long arg2) token.lib
byte <=(long arg1, byte arg2) token.lib
byte <=(long arg1, word arg2) token.lib
byte <=(long arg1, long arg2) token.lib

If the result of arg1 less arg2 is less than or equal to zero, 0xff is returned. Otherwise, a 0 is
returned as the value of the test.

FBASIC TICkit 6 Standard Library

Protean Logic 108

> Multi-precision relational test for greater than
byte >(byte arg1, byte arg2) token.lib
byte >(byte arg1, word arg2) token.lib
byte >(byte arg1, long arg2) token.lib
byte >(word arg1, byte arg2) token.lib
byte >(word arg1, word arg2) token.lib
byte >(word arg1, long arg2) token.lib
byte >(long arg1, byte arg2) token.lib
byte >(long arg1, word arg2) token.lib
byte >(long arg1, long arg2) token.lib

If the result of arg1 less arg2 is greater than zero, 0xff is returned. Otherwise, a 0 is returned
as the value of the test.

< Multi-precision relational test for less than
byte <(byte arg1, byte arg2) token.lib
byte <(byte arg1, word arg2) token.lib
byte <(byte arg1, long arg2) token.lib
byte <(word arg1, byte arg2) token.lib
byte <(word arg1, word arg2) token.lib
byte <(word arg1, long arg2) token.lib
byte <(long arg1, byte arg2) token.lib
byte <(long arg1, word arg2) token.lib
byte <(long arg1, long arg2) token.lib

If the result of arg1 less arg2 is less than zero, 0xff is returned. Otherwise, a 0 is returned as
the value of the test.

<> Multi-precision relational test for not equal
byte <>(byte arg1, byte arg2) token.lib
byte <>(byte arg1, word arg2) token.lib
byte <>(byte arg1, long arg2) token.lib
byte <>(word arg1, byte arg2) token.lib
byte <>(word arg1, word arg2) token.lib
byte <>(word arg1, long arg2) token.lib
byte <>(long arg1, byte arg2) token.lib
byte <>(long arg1, word arg2) token.lib
byte <>(long arg1, long arg2) token.lib

If the result of arg1 less arg2 is not equal to zero, 0xff is returned. Otherwise, a 0 is returned
as the value of the test.

and Perform logical AND conjunction on two bytes
byte and(byte arg1, byte arg2) tokext.lib

This function returns 0xffb only if both arguments are logically true. In other words, this
function returns 0b if either of the arguments is 0b. Use this function when combining
relational tests in logical expressions.

6 Standard Library FBASIC TICkit

109 Protean Logic

or Perform logical OR conjunction on two bytes
byte or(byte arg1, byte arg2) tokext.lib

This function returns 0xffb if either of the two arguments is logically true. In other words,
this function returns 0b only when both of the arguments is 0b. Use this function when
combining relational tests in logical expressions.

not Perform logical NOT on a byte
byte not(byte arg) tokext.lib

This function returns 0xffb only if the argument is zero. In other words, this function returns
0b if the argument is any value other than 0b.

Examples:

FUNCTION none main
 LOCAL in_temp
BEGIN
 REP
 =(in_temp, ad_read())
 IF or(<(in_temp,35), > (in_temp, 112))
 allarm(in_temp)
 ELSE
 do_other_stuff(in_temp)
 ENDIF
 LOOP
ENDFUN

6.8 Input and Output Functions
The input and output functions represent the TICkits interface to the real world. All of these functions
are implemented as high speed internal PIC routines. Most of these routines refer to a pin_number
argument. The pin number is a byte that ranges between 0 and 15. The pin numbers 0 through 7
correspond to the pins labeled D0 through D7 on the TICkit. The pin numbers 8 through 13
correspond to the pins labeled A0 through A5 on the TICkit. Pin number 14 is labeled R/W and pin
number 15 is labeled DL on the TICkit. Just as this implies, the I/O pins on the TICkit can often
serve different roles in different programs. Pins may serve as data or address bus pins, general I/O
pins, or a serial connections.

pin_high Make pin a high logic output
none pin_high(byte pin_number) token.lib

Make the specified pin an output and set it to a high voltage level. The pins are numbered 0
through 15 where 0 is the data port's pin 0 and 15 is the address port's pin 7.

FBASIC TICkit 6 Standard Library

Protean Logic 110

pin_low Make pin a low logic output
none pin_low(byte pin_number) token.lib

Make specified pin an output and set it to a low voltage level. The pins are numbered 0
through 15 where 0 is the data port's pin 0 and 15 is the address port's pin 7.

pin_in Make pin an input and return logic level
byte pin_in(byte pin_number) token.lib

Return a logical value representing the logical voltage level of the specified pin. A true value
is returned if the pin has a logical high value input to it. The pins are numbered 0 through
15 where 0 is the data port's pin 0 and 15 is the address port's pin 7.

aport_get Get byte representing pin levels of address port
byte aport_get() token.lib

Read all 8 pins from the address port into a byte.

dport_get Get byte representing pin levels of data port
byte dport_get() token.lib

Read all 8 pins from the data port into a byte.

aport_set Set pin levels of address port
none aport_set(byte pins_values) token.lib

Sets all 8 pins in the address port to the levels specified by pins_values.

dport_set Set pin levels of data port
none dport_set(byte pins_values) token.lib

Sets all 8 pins in the data port to the levels specified by the pins_values.

atris_get Get status of address pin tristate levels
byte atris_get() token.lib

Returns all 8 bits from the address direction register. A zero in a bit indicates that the
corresponding pin is an output.

dtris_get Get status of data pin tristate levels
byte dtris_get() token.lib

Returns all 8 bits from the data direction register. A zero in a bit indicates that the
corresponding pin is an output.

atris_set Set tristate levels for address pins
none atris_set(byte dir_values) token.lib

Sets all 8 bits of the address direction register according to dir_values. A zero in a bit
indicates the corresponding pin is to be an output.

6 Standard Library FBASIC TICkit

111 Protean Logic

dtris_set Set tristate levels for data pins
none dtris_set(byte dir_values) token.lib

Sets all 8 pins of the data direction register according to dir_values. A zero in a bit indicates
the corresponding pin is to be an output.

pulse_in_low Measure duration of a low pulse
word pulse_in_low(byte pin_number) token.lib

Measures the duration of a low pulse on the specified pin. A zero is returned if either no
pulse is detected or if the pulse is greater than .65535 seconds in duration. Each count is 10
microseconds.

pulse_in_high Measure duration of a high pulse
word pulse_in_high(byte pin_number) token.lib

Measures the duration of a high pulse on the specified pin. A zero is returned if either no
pulse is detected or if the pulse is greater than .65535 seconds in duration. Each count is 10
microseconds.

pulse_out_low Generate a low pulse on a pin
none pulse_out_low(byte pin, word dur) token.lib

Generates a low pulse of the specified duration on the specified pin.
Each count produces a 10 microsecond duration.
NOTE: Pin must be made an output before executing this function.

pulse_out_high Genereate a high pulse on a pin
none pulse_out_high(byte pin, word dur)token.lib

Generates a high pulse of the specified duration on the specified pin.
Each count produces a 10 microsecond duration.
NOTE: Pin must be made an output before executing this function.

cycles Generate square wave cycles on a pin
none cycles(byte pin, word cycles,~
 ~word high_time, word cycle_time) token.lib

Generates the specified number of square wave cycles on the specified pin, with the specified
high and cycle periods. All times are specified in approx. 3 us intervals. By keeping the high
time one half of the cycle time, a 50% duty cycle square wave can be generated. By varying
the duty cycle of the wave, the cycles function can be used as analog to digital conversion by
connecting a capacitor between the output pin and ground. Up to a 16 bit resolution can be
supported using this method. Use a constant as the fixed wave length of the conversion. The
voltage out will correspond to the ratio of the high_time divided by the cycle_time multiplied
by the high voltage. Frequencies as low as 2.5 cycles per second and as high as 60K cycles
per second can be generated using this function.
NOTE: Pin must be made an output before executing this function.

FBASIC TICkit 6 Standard Library

Protean Logic 112

rc_measure Measure the resistance/capacitance at a pin
word rc_measure(byte pin) token.lib

Measures the discharge time of a resistance and capacitance circuit. This function can be
used to determine either the resistance or the capacitance in such a circuit. The resistance
and capacitance should be wired in parallel between the I/O pin specified and ground. A zero
will be returned if either the discharge time is too low, or the charge/discharge time is too
high. Appendix A describes this circuit in greater detail.

Examples:

; resistance to voltage converter

FUNCTION none main
 LOCAL word res_val
BEGIN
 pin_low(9b) ; discharge cap
 REP
 =(res_val, - (rc_measure (9b), 1000)
 ; RC circuit at pin 9
 cycles (10b, 100, res_val, 39000)
 ; D/A circuit at pin 10
 ; assume full range value is 40000 and low value
 ; is 1000.
 LOOP
ENDFUN

6.9 Eeprom Routines (Pointer Dereferencing)
The EEprom routines access information contained in the TICkit eeprom by using a 16 bit address.
This is the same memory that is used to contain the TICkit program. When an FBASIC program is
compiled, the compiler calculates the amount of space required by the procedure and all
ALLOCATIONs. The first EEprom location that is not used by the program is placed in a special
vector at the beginning of the EEprom by the compiler. The two bytes contained at locations 0x0004
and 0x0005 of the EEprom form a 16 bit word which is the address of the first available EEprom
space. This address and all addresses higher than it are available for a program to use. Much of this
address space may not be usable if no EEprom device has been installed for that area. The standard
2K EEprom TICkits have a total address space from 0x0000 to 0x07ff. 8K EEprom configured
TICkits are initially shipped with only an 8K EEprom installed, but an additional 7 devices may be
installed which brings the address range up to a full 64K. The programmer will need to code
programs with the known upper limit of memory to prevent an unsuccessful read or write to an illegal
address.

The ALLOCATE directive bypasses some of the complexity mentioned above. The ALLOCATE
statement will reserve EEprom space for data use. The address of any allocation or component field of
an allocation is known in an expression simply by referencing the full field and allocation name. The

6 Standard Library FBASIC TICkit

113 Protean Logic

programmer must still exercise caution to ensure that allocations do not exceed the physically
implemented limit of the EEprom.

ee_read Read a byte at EEprom address
byte ee_read(word address) token.lib

Reads a byte from the EEprom at the specified address. Reads that are out of the valid
address space (no eeprom maps to that address) will cause unpredictable results that may
result in premature program termination. The programmer must therefore assure that the
address is valid. EEprom address 4 and 5 contain the low and high bytes of the address of
the first available eeprom byte. All space from this point to the end of the EEprom storage
address space is available for program use. The ALLOCATE keyword can be used to allocate
EEprom data space in a structured way.

ee_read_word Read a word at EEprom address
word ee_read_word(word address) ee.lib

Reads a word from the EEprom at the specified address. Reads that are out of the valid
address space (no eeprom maps to that address) will cause unpredictable results that may
result in premature program termination.

ee_read_long Read a long at EEprom address
long ee_read_long(word address) ee.lib

Reads a long from the EEprom at the specified address. Reads that are out of the valid
address space (no eeprom maps to that address) will cause unpredictable results that may
result in premature program termination.-

ee_write Write a byte to EEprom address
none ee_write(word address, byte data) token.lib
none ee_write(word address, word data) ee.lib
none ee_write(word address, long data) ee.lib

Writes the contents of the argument data to the EEprom at the specified address. See ee_read
for more details.

FBASIC TICkit 6 Standard Library

Protean Logic 114

EEprom Examples:

; use record and allocate to record purchases
LIB ee.lib ; library for ee_write_word

RECORD each_buy
 FIELD word cust_no
 FIELD word quantity
 FIELD word prod_no
ENDREC

ALLOC word last_purchs
ALLOC each_buy purchs 100 ; make space for 100 purchases

GLOBAL cur_purchs 0

FUNCTION none main ; list purchases
 LOCAL word temp_purchs
 LOCAL word purch_count 0
BEGIN
 ee_read_word(cur_purchs, last_purchs) ; read last rec
 =(temp_purchs, purchs) ; points to first record
 WHILE <(temp_purchs, cur_purchs)
 ++ (purch_count)
 con_out(purch_count)
 con_out_char(' ')
 con_out (ee_read_word(~

~ +(temp_purchs, cust_no@each_buy)))
 ; display customer number
 con_out_char(' ')
 con_out(ee_read_word(~
 ~ +(temp_purchs, quantity@each_buy)))

; display quantity
 con_out_char(' ')
 con_out(ee_read_word(~
 ~ +(temp_purchs, prod_no@each_buy)))
 ; display product number
 con_out_char ('\r')
 con_out_char('\l')

 =(temp_purchs, +(temp_purchs, each_buy))
 LOOP
ENDFUN

6 Standard Library FBASIC TICkit

115 Protean Logic

6.10 IIC Peripheral Functions
Starting with version 2.0 of the TICkit interpreter, Generic I2C bus operations are supported for
limited peripheral connections using the existing clock and data lines. These lines, which connect to
the EEprom and also be used to connect to I2C peripherals with compatible command protocols. Such
a device is the Protean X-Tender device. When placing additional peripherals on the I2C bus wires,
care must be used to ensure the electrical requirements of the 400k bit per second connection are
conformed to. This may require 10k ohm terminations on the physical ends of the lines, special
routing of the lines, and special logical address selection of the devices sharing the line. All devices
must conform to the three byte or four byte protocol specifications:

1. Address Byte: bit0=R/W, upper seven bits must be a unique device address
2. Command Byte: This byte command the addressed device to do something
3. Data Byte(s): The byte(s) is either read or written on the basis of the Address byte bit0. This

is usually a parameter for a command, or the result of the previous command. If the function
is a word function, the low byte is sent first.

4. In Read operations, the above protocol is modified. If the R/W bit of the address byte is 0, the
address and command bytes will be sent but a re-start will be issued instead of any data
transfere following the command byte. If the R/W bit is set, the address and command bytes
are skipped and only the following occurs.

5. The address byte is sent with the R/W bit set.
6. Data Byte(s): The single or double byte (TICkit 57 only for double byte) data is received by

the TICkit. The TICkit can be paused by the sending device holding the clock for the first
data bit of transfer. The sending device must not hold the TICkit for longer than the internal
watchdog timer (approx 16ms) or a TICkit reset may occur.

Three functions implement this protocol. The user must ensure that the address bit is set appropriately
for reading or writing. Additionaly, notice that the Address/command word used in all of the I2C
functions is a passback parameter. If there is an error communicating to an I2C device, the upper byte
of the Address/command word is cleared. The Interpreter will attempt to communicate with a device
for approximately 16ms (or more if a prescaler is used with the internal watch dog timer) before
clearing the address byte and continuing past the I2C function.

i2c_write Write a command and data byte to bus
none i2c_write(word addr_comm, byte data) token.lib

This function will write a byte to the addressed device. The address and command bytes are
concatenated to form the addr_comm byte. The exact address and command will vary from
one peripheral device to another.
The address byte of addr_comm will be cleared if the function fails. The word data version
of this function is only available in the TICkit57

FBASIC TICkit 6 Standard Library

Protean Logic 116

i2c_read Read a byte from an addressed device
byte i2c_read(word addr_comm) token.lib

This function will transmit an address and a command, then wait to read back a byte from
the addressed device. The exact protocol used in this function depends upon the level of the
R/W bit of the device address. If the R/W bit is low (write level) an address byte and
command byte will be sent before the data read is performed. The address byte of
addr_comm will be cleared if the function fails.

I2C I/O Examples:

=(write_addrcomm, 0x80c2w)
i2c_write(write_addrcomm, 0x8b) ; select A/D channel 0

; on I2C Xtender periph.
IF <(write_addrcomm, 256w)
 call i2c_error() ; handle error with I2C
ELSE
 =(in_voltage, i2c_read(0x80c2w)) ; read voltage
ENDIF

6.11 Parallel Bus And Lcd Functions
The bus functions implement a limited traditional parallel microprocessor bus. This bus may have
either 8 or 4 data lines and may have up to 6 address lines for a total address space of 32 read and 32
write locations. Bus configurations with 4 lines can be made to write 8 bit values by sending two 4 bit
values in succession. This works with LCD modules that support 4 bit nibble modes. Before any bus
transfer, the bus routines must be set up with a special control byte. The upper two bits of this byte
define the mode of the bus. Bit 7 determines if the data bus is 8 lines wide or 4 lines wide. Bit 6 has
meaning only for 4 bit buses and determines if 8 bit values are to be sent on the bus by automatically
sending two nibbles for every 8 bit value. The remaining bits of the control byte (bit 0 through bit 5)
determine which of the address lines to use for bus operations and which lines to leave as general
purpose I/O. If the bus is 4 lines wide only pins D4 through D7 are used for bus operations. Any of
these bits that are high indicate that the corresponding address pin should be used to bus operations.
Between bus operations, all selected address pins are set to a low level, effectively addressing location
0x00.

Data lines may be used for general purpose I/O between bus operations provided that the bus is set up
again before the next bus operation.

The lower three address lines (A0 thru A2) maintain their levels longer than the upper address (A3
thru A5) lines. This prevents any race conditions that may exist between device selecting logic and
the R/W, data lines, and the device select lines. For this reason, The lower three lines should be used
as register select lines while the upper address lines should be used to select between devices on the
bus. The meanings of the upper address lines combined with the fact that the address of zero is used
as the "deselect" means that locations 0x00 through 0x07 should not be used by any devices on the
bus. Map all address decoding to select device by requiring at least one of the upper address lines (A3
thru A5) to be high.

6 Standard Library FBASIC TICkit

117 Protean Logic

Some common LCD functions are documented here. These functions are contained in the libraries
mentioned in their prototype. These functions assume the pressence of three defined symbols. Symbol
lcd_bus_mask specifies which of the address lines are to be used by bus functinos. Symbol
lcd_data_reg specifies the bus address for the data register. Symbol lcd_cont_reg specifies the bus
address for the control register of the LCD module.

buss_setup Setup address and data pins for bus I/O
none buss_setup(byte mode_and_mask) token.lib

Sets up the external bus routines. the mode_and_mask specify what the data bus width will
be, if 4 bit wide how may nibbles to send, and which lines from the address port to dedicate
to use as address lines. Bit 7 specifies the width of the data bus. A high indicates that all
eight lines of the data I/O port are dedicated to bus functions. A low indicates that only bits 4
through 7 are dedicated to bus functions. Bit 6 is ignored for 8 bit operations but indicates
how many nibbles to send for each bus function if the data bus is 4 bit. A high in bit 6 causes
all bus functions to perform two 4 bit nibble transfers for every operation to transfer a
complete 8 bit byte. If bit 6 is low, only bits 4 through 7 of any bus read or write operation
will be transferred. Bits 0 through 5 of mode_and_mask are used to reserve I/O lines of the
address port for bus address lines. If any of these bits are high, the bits will be used to select
devices on the bus during read and write operations. Any bits of mode_and_mask that are
low are unaffected in future bus read/write operations. All bus read or write operations effect
pin 6 of the address port. This line is used as the read/write line for the address bus. This line
is normally a high output after bus_setup but is brought low during bus write operations.
Items on the address bus are selected whenever their address is placed on the used address
port lines. Whenever a bus operation is not taking place, all used address lines are brought
low. This effectively selects bus address zero. Therefore, no devices on the address port can
be mapped to address zero.

buss_read Read a byte from bus address
byte buss_read(byte address) token.lib

Reads a byte from the external bus at the specified address. Read method will conform to the
current bus setup. Unused address or data I/O lines will not be affected by this function.

buss_write Write byte to bus address
none buss_write(byte addr, byte data) token.lib

Writes a byte to the external bus at the specified address. Writes conform to the current bus
setup. No unused address or data I/O lines are affected by this function.

lcd_init4 Initializes an LCD module for 4 bit data bus
none lcd_init4() lcdinit4.lib

This function sets up the TICkit bus and sends the necessary commands to initialize a 44780
based LCD module for 4 bit data transfer.

FBASIC TICkit 6 Standard Library

Protean Logic 118

lcd_init8 Initializes an LCD module for 8 bit data bus
none lcd_init8() lcdinit8.lib

This function sets up the TICkit bus and sends the necessary commands to initialize a 44780
based LCD module for 8 bit data transfer.

lcd_cont_wr Writes a byte to LCD control register
none lcd_cont_wr(byte control) lcdsend.lib

Use this function to write to the control register of a 44780 based LCD module. This function
automatically ensures previous command is complete.

lcd_data_wr Writes a byte to LCD data register
none lcd_data_wr(byte data_val) lcdsend.lib

Use this function to write to the data register of a 44780 based LCD module. This function
automatically ensures previous command is complete. The data register is either character
generator data or display data depending on the last write to the control registers address
control.

lcd_string Writes a string to the LCD
none lcd_string(word string_addr) lcdstrin.lib

This function writes a string of bytes to the LCD from a location in EEprom. The string must
be null terminated. No control characters are acted upon.

lcd_out Writes a number to the LCD
none lcd_out(byte value) lcdbyte.lib
none lcd_out(word value) lcdword.lib
none lcd_out(long value) lcdlong.lib

This function writes a number to the LCD screen. Three versions of this routine write either
a byte, a word or a long value to the LCD.

lcd_fmt Writes a formatted long to the LCD
none lcd_fmt(long value, word form) lcd_fmt.lib

This function writes a formatted number to the LCD screen. The format is determined by a
string contained in EEprom (pointed to by argument form). Each character in the format
string cooresponds to a digit. The character meanings are as folllows:

$ Print a '$' character in the output
Print a number if this or a previous digit was non-zero
0 Print a number even zero, forces following #'s to print
X Do not print a number digit, but account for its position
. Print a decimal point

6 Standard Library FBASIC TICkit

119 Protean Logic

Bus I/O Examples:

; Check that LCD is ready to receive data and write
; assume LCD is already initialized

FUNCTION none lcd_write
 PARAMETER byte lcd_out
BEGIN
 WHILE >(bus_read(lcd_cont_reg), 0x80b)
 LOOP

 bus_write(lcd_data_reg, lcd_out)
ENDFUN

6.12 Timing and Counting Functions
The TICkit has no built in time keeping capability except for the microprocessor clock. However, by
executing a known number of PIC instructions, a delay of known duration can be caused. This
delaying technique is used to produce the time base for the following functions.

In addition to the delaying technique, the TICkit can take advantage of the PIC's internal RTCC (real
time clock counter) to count rising or falling edges on the RTCC input, or to count machine clock
cycles. The mode of the RTCC is set by using the "rtcc_" functions.

One additional capability of the PIC is used to generate longer delays and reduced power operation.
Each PIC has a built in watchdog timer. This timer is a crude internal RC circuit that will reset the
PIC if the Capacitor is not recharged before it is fully discharged. The watchdog timer is unavailable
as a seperate user controlled resource, but is used by the interpreter for trapping unexplained errors
like I2C timeout or for use with the sleep functions. This method of timing is relatively imprecise, but
is still useful for creating a low power delay. The sleep function uses this method.

delay Delay processing for milliseconds
none delay(word millisecond) token.lib

Delays program execution for the specified number of milliseconds.

FBASIC TICkit 6 Standard Library

Protean Logic 120

sleep Delay processing and conserve power for a time
none sleep(byte sleep_periods) token.lib

Puts the processor to sleep for the specified amount of sleep periods. Each period is
nominally 18ms. This function, due to internal PIC organization, will modify the RTCC
edge and source settings. NOTE: the time base for this function is an internal RC discharge
rate and is affected by temperature and environmental conditions like the characteristics of
the IC or supply voltage variations. The base delay of this function is typically 18ms at 25
degrees C, but can vary between 9ms and 30ms. Note: it is possible to assign the RTCC
prescaler to the sleep timer using custom OPERATION directives not contained in the
standard library. This will dramatically increase the sleep interval. If you really want to do
this, examine the token library and observe how the rtcc_int_256 and rtcc_ext_rise
operations are created. These operations simply set the PIC OPTION register.

rtcc_get Get the current count of the RTCC register
byte rtcc_get() token.lib

Reads the 8 bit contents of the RTCC register.

rtcc_set Set the count of the RTCC register
none rtcc_set(byte count) token.lib

Sets 8 bit value, "count" into the RTCC register.

rtcc_int RTCC source is internal clock
none rtcc_int() token.lib

Sets the source for the RTCC to be the internal clock. This is the oscillator frequency divided
by 4. This clock is inactive during sleeps.

rtcc_int_16 RTCC source internal and prescaled by 16
none rtcc_int_16() token.lib

Sets the source for the RTCC to be the internal clock. This is the oscillator frequency divided
by 64. This clock is inactive during sleeps.

rtcc_int_256 RTCC source internal and prescaled by 256
none rtcc_int_256() token.lib

Sets the source for the RTCC to be the internal clock. This is the oscillator frequency divided
by 1024. This clock is inactive during sleeps.

rtcc_ext_rise RTCC source is external clock
none rtcc_ext_rise() token.lib

Sets the source for the RTCC to be the external pin and clocks on the rising edge of any
signal on this pin. This pin should be tied high or low if not used.

6 Standard Library FBASIC TICkit

121 Protean Logic

rtcc_ext_fall RTCC source is external clock
none rtcc_int() token.lib

Sets the source for the RTCC to be the external pin and clocks on the falling edge of any
signal on this pin. This pin should be tied high or low if not used.

rtcc_count Count while delaying for milliseconds
byte rtcc_count(word milliseconds) token.lib

Clears the RTCC register then counts pulses in the RTCC while the TICkit delays for n
milliseconds. The 8 bit contents of the RTCC is returned after the delay. This function is
useful for determining frequency of an AC signal up to about 50kHz.

rtcc_wait Wait until RTCC count rolls over to zero
none rtcc_wait() token.lib

TICkit execution will pause until the RTCC register rolls over to a count of zero. This
function can be used in conjunction with RTCC_SET and RTCC_INT_256 to implement a
real time clock. By setting the RTCC count before a section of program is executed and then
waiting for the RTCC count to roll over to zero following the program segment, the
programmer can ensure the segment will take the same amount of time to execute for each
time it is executed. This makes it possible to create real time loops.

Timing Examples:

; determine the frequency of an input square wave
; using the RTCC

FUNCTION word freq_get
BEGIN
 rtcc_ext_rise() ; rising edge-external
 =(exit_value, rtcc_count(100))
 ; count pulses for 100ms
 ; measures between 0 and 2550 Hz signals to
 ; the nearest 10 Hz.
ENDFUN

6.13 RS232 and Communications Functions
The PICs used by the TICkit57 and TICkit62 have no serial communications hardware built into
them. Therefore, the token interpreter uses special software operations in the TICkit to simulate
asynchronous serial communications hardware. This software relies on loops of PIC instructions to
generate the timebase for the serial timing. This method does not produce the exact timing for the
standard baud rates but produces acceptable results for rates from 300 to 9600 baud with a 4mHz PIC
clock and 300 to 19200 baud with a 20 mHz PIC.

The routines also support a true and an inverted input/output through a general purpose I/O pin. All
these parameters are set with a special parameter byte. Bit 7 of this bit indicates if the communication
is inverted (bit7=1) or if the communications are true (bit7=0). Bits 4 through 6 determine the baud

FBASIC TICkit 6 Standard Library

Protean Logic 122

rate where 000=300 baud and 110=19200 baud. Bits 0 through 3 determine which general purpose
I/O pin to use where 0000 is pin D0, 1000 is pin A0, and 1111 is the DL pin (which is used for
debugging purposes also).

One additional parameter can be specified using the rs_stop_chek and rs_stop_ignore functions. If
set to ignore, the stop bit of any value received from the serial communication is not to be tested for
framing accuracy. This provides one additional bit of time for processing consecutive data received
through the serial port, but does not allow the detection of a framing errors or break levels.

Special care must be exercised when using the serial receiving routines. The routines must be
executing when data is transmitted from the sending device, otherwise the startbit will not be sensed
and either no information or erroneous information will be received. This introduces an unavoidable
timing problem for bursts of more than one byte of information to be received through the serial
functions. Any processing of the byte just received must take place in one half bit time (or 1.5 bit
time if the stop bit is not sensed) to ensure that the next byte will be received intact. This provides
very little time for processing at high baud rates.

The TICkit57 has only a single byte receive routine for RS232. The TICkit62 has a multi-byte buffer
and can receive up to 128 bytes of serial in a block (128 is a theoretical limit, in actual use, some of
the TICkit memory will be used for processing and stack. On the TICkit62, 64 bytes is probably the
maximum buffer than can be used for serial blocks).

The TICkit62 assumes that a message format will be used frequently on the TICkit. This is
accomidated by features in the recblock function that wait for break levels or a specific address byte
before actually capturing serial data. Also, the TICkit 62 can generate handshaking signals for a
normal serial stream. Whenever the buffer gets full, the handshake line will change level and signal
the transmitting device to pause while the the TICkit digests the buffer information.

rs_param_set Set RS232 parameters
none rs_param_set(byte type_baud_pin) token.lib

Setup baud rate and pin number for serial RS232 communications. This function also sets
the pin level meanings. Bit 7 of type_baud_pin determines if the communications signal is
inverted and open sourced, or if it is true and totem pole. If bit 7 is high, the signal is
inverted and the driver is open sourced when transmitting which means the line must be
pulled low. If bit 7 is low, the signal is true and the transmit driver is a totem pole
configuration. A totem pole configuration should not be "wire-ored" to prevent stressing the
output electrically. Bits 4 through 6 determine the baud rate of the communications routines.
A value of 0 in these bits selects a 300 baud rate. A value of 14 selects a 19,200 baud rate.
All baud rates in between follow the same doubling pattern. Bits 0 through 3 determine the
pin for communications where 0 is data line 0 and 15 is address line 7. The standard console
and debug parameter is a setting of 0xDF (Inverted, 9600 baud, pin 15-address line 7).

6 Standard Library FBASIC TICkit

123 Protean Logic

rs_break Send RS232 break condition
none rs_break() token.lib

Sends a break condition for the baud rate and pin specified by the rs_parameter. This
function literally sends a space level for 13.5 bit times.
A break condition is technicaly a space level for at least 10 consequtive bit times. Normally,
because rs232 consists of a start bit, 9 data bits, and at least on stop bit, no more than 9
consequtive space levels should occur before a mark level. Since an idle rs232 line is at mark
level, a break condition will never occur as long as normal communication is taking place.
Historically, break conditions were used to communicate a piece of information which is
extraordinary to the normal data stream. The name "break" is derived from time share
systems in which a break condition was used to interrupt the remote computer's program
execution and return to an OS prompt. Breaks are also used to indicate the beginning of data
frames etc. in serial packet protocols. Most asynchronys receivers interpret a break as a
framing error with a data result of 0. By testing for this condition, breaks can be detected and
used to advantage. The TICkit62 can use a break condition as a prefix for an address byte in
the rs_recblock function.

rs_param_get Get RS232 parameters
byte rs_param_get() token.lib

Reads the current output type, baud rate, and pin number for serial RS232 communications.
See the rs_param_set function for more details.

rs_send Send byte out RS232 pin (TICkit57)
none rs_send(byte data, byte brk) token.lib

Send the value "data" out conforming to the RS232 timing standards. Input and output
levels, as well as baud rate and pin are determined by the current contents of the rs_param
register. A non-zero value for "brk" will cause an incorrect stop bit level to be sent, which is
interpreted by most receivers as either a framing error or a break condition.

rs_send Send byte out RS232 pin (TICkit62)
none rs_send(byte data) token.lib

Send the value "data" out conforming to the RS232 timing standards. Input and output
levels, as well as baud rate and pin are determined by the current contents of the rs_param
register. Break conditions can be generated using pulse functions or pin functions and timing
delays.

FBASIC TICkit 6 Standard Library

Protean Logic 124

rs_receive Receive byte in RS232 pin (TICkit57)
byte rs_receive(word wait, byte err) token.lib

Receive a byte through a general purpose I/O pin. Input and output levels, as well as baud
and pin information are determined by the current contents of the rs_param register. This
function will wait approximately (16us * wait) for a start bit before returning an error. A
zero value for wait, or a value greater than 65280 will cause an indefinite wait for a start bit.
Error codes are: 0 = no error, 1=framing error (break), 2=timeout for start, 4=no initial mark
level.

rs_receive Receive byte in RS232 pin (TICkit62)
byte rs_receive(byte wait, byte control, byte err) token.lib

Receive a byte through a general purpose I/O pin. Input and output levels, as well as baud
and pin information are determined by the current contents of the rs_param register. This
function will wait approximately (4096us * wait) for a start bit before returning an error. A
zero value for wait produces an indefinite wait for a start bit. The control byte is used to
select a general purpose pin for handshake (lower four bits) and to enable handshaking by
setting bit 4. Error codes are: 0 = no error, 1=framing error (break), 2=timeout for start,
4=no initial mark level.

rs_recblock Receive array of bytes in RS232 pin
byte rs_receive(byte wait, byte control, byte address,~
 ~byte buffer[], byte buf_size) token.lib

Receive a block of bytes through a general purpose I/O pin. Input and output levels, as well
as baud and pin information is determined by the current contents of the rs_param register.
This function will wait approximately (4096us * wait) for a start bit before returning an
error. A zero value for wait will cause an indefinite wait for a start bit and indefinate wait for
all characters in a message. The return value indicates if there was an error, and if so how
many characters were received. If the return value is 0, no errors occured and the entire
block was received. If an error occurs, the return value will be 128 les the number of bytes
not received.
 The address byte is the byte to match before bytes are captured into the buffer. The buffer is
an array of bytes that must be at least as large as buf_size to prevent adjacent memory from
being overwritten. The rs_recblock function will continue to capture serial data until either
the function times out or the buffer is filled.

6 Standard Library FBASIC TICkit

125 Protean Logic

 The control parameter contains information about handshake, block qualifying and
message timing. The lower four bits of the control byte are the handshake pin. If bit 7, the
most significant bit is set, the rs_recblock will wait for a break on the line before receiving a
block. If bit 6 is set, rs_recblock will wait for a byte that matches the address byte before
receiving the block. If bit 5 is set, rs_recblock will wait for 32*buf_size character attempts
otherwise rs_recblock will wait for 8*buf_size character attempts. If bit 4 is set, rs_recblock
will assert the handshake line, otherwise the handshake pin will remain unchanges by
rs_recblock. In order for proper break detection to work, the RS system must be set to check
the stop bit using rs_stop_chek function.

rs_string Send a string of bytes out RS232 pin
none rs_string(word string_addr) rs_str62.lib, rs_str57.lib

This function sends a string of characters located in EEprom out of a general purpose pin in
RS232 serial format. The pin, baud_rate, and levels are defined by the rs_param_set
function. The string must be null-terminated.

rs_delay Delay one and one half RS232 bit times
none rs_delay() token.lib

Delay one and one half bit time. Use this function to produce the minimum required delay
when sending a serial byte on the same pin just used to receive serial information. This delay
is required to prevent a framing error or data overrun. Additional time delay may be required
if the sending device will need to do any processing before being ready to receive serial data.
The baud rate used to calculate the delay time is contained in the rs_param register.

rs_stop_chek Set RS232 stop bit protocol on
none rs_stop_chek() token.lib

This function causes the level of the stop bit to be checked after each RS232 byte is received.
Framing errors can only be detected by checking the stop bit. Additional time is required to
check the stop bit, however. Some programs may wish to ignore the stop bit to gain more
time for handling continuous serial information.

rs_stop_ignore Set RS232 stop bit protocol off
none rs_stop_ignore() token.lib

This function causes the level of the stop bit to be ignored after each RS232 byte is received.
Additional time for processing continuous serial information is available by ignoring the stop
bit. Framing errors can only be detected by checking the stop bit, however.

rs_fmt Sends a formatted long out RS232 pin
none rs_fmt(long value, word form) rs_fmt57.lib, rs_fmt62.lib

This function formats the long argument value into a string of characters on the basis of the
string form. This function allows control of leading and trailing zeros, decimal point
placement, and dollar sign. The format string is a null terminated string contained in
EEprom. The characters that have special meaning are as follows:

FBASIC TICkit 6 Standard Library

Protean Logic 126

$ Print a '$' character in the output
Print a number if this or a previous digit was non-zero
0 Print a number even zero, forces following #'s to print
X Do not print a number digit, but account for its position
. Print a decimal point

Examples:

; listen for a break with this node's address

FUNCTION none wait_addr
 LOCAL byte errorval
 LOCAL byte rs_buffer[32]
BEGIN
 rs_stop_check() ; test stop bit for valid
 rs_param_set (rs_invert | rs_2400 | pin_a2)
 ; inverted, 2400, pin 10
 REP
 =(errorval, rs_recblock(100b,~
 ~ rs_cont_brk | rs_cont_addr | rs_cont_wait, ~
 ~ 'A', rs_buffer, 32b))
 IF errorval
 ELSE
 ; message received OK

proc_pack() ; process serial packet
 ENDIF
 LOOP
ENDFUN

6.14 Console Functions
The console functions use the internal serial I/O routines of the token interpreter to communicate to a
console computer. The console functions use the information contained in the rs_param_byte to
determine which pin, baud rate, and line levels to use for the communication. To communicate with
the supplied software, the line must be inverted, and the baud rate must be 9600 baud. Furthermore,
to use the debugger console, only pin 15 (DL) can be used for the console pin.

The console functions perform special handshaking to ensure that the TICkit is listening while the
console sends data to it. Therefore, these routines should not be used to send non-TICkit protocol
serial information. Use the serial communications functions listed above for that purpose.

con_test Test for the existance of a console
byte con_test() token.lib

Returns zero to indicate a console listening on the console pin. Any other value returned
indicates that no console is listening.

6 Standard Library FBASIC TICkit

127 Protean Logic

con_in_char Get a character from console (TICkit57)
byte con_in_char(word wait) token.lib

Get an ASCII character from the console. The "wait" value indicates that the function should
wait for only wait*16us interval. This produces a maximum delay of approximately one
second. A zero for wait, or a value greater than 65280 will cause the function to wait
indefinitely for input. Any characters typed on the console are not echoed locally by the
console.

con_in_char Get a character from console (TICkit62)
byte con_in_char(byte wait) token.lib

Get an ASCII character from the console. The "wait" value indicates that the function should
wait for only wait*4096us interval. This produces a maximum delay of approximately one
second. A zero for wait causes the function to wait indefinitely for input. Any characters
typed on the console are not echoed locally by the console.

con_in_byte Get a byte from the console (TICkit57)
byte con_in_byte(word wait) token.lib

Get a value of size byte from the console. This function waits the same as the con_in_char
function. Digits typed on the console while entering the number are echoed locally within
console.

con_in_byte Get a byte from the console (TICkit62)
byte con_in_byte(byte wait) token.lib

Get a value of size byte from the console. This function waits the same as the con_in_char
function. Digits typed on the console while entering the number are echoed locally within
console.

con_in_word Get a word from the console (TICkit57)
word con_in_word(word wait) token.lib

Get a value of size word from the console. This function waits the same as the con_in_char
function. Digits typed on the console are echoed locally.

con_in_word Get a word from the console (TICkit62)
word con_in_word(byte wait) token.lib

Get a value of size word from the console. This function waits the same as the con_in_char
function. Digits typed on the console are echoed locally.

con_in_long Get a long from the console (TICkit57)
long con_in_long(word wait) token.lib

Get a value of size long from the console. This function waits the same as the con_in_char
function. Digits typed on the console are echoed locally.

FBASIC TICkit 6 Standard Library

Protean Logic 128

con_in_long Get a long from the console (TICkit62)
long con_in_long(byte wait) token.lib

Get a value of size long from the console. This function waits the same as the con_in_char
function. Digits typed on the console are echoed locally.

con_out_char Send a byte character to the console
none con_out_char(byte data) token.lib

Send an ASCII character to a console. The byte "data" is sent to the console with instructions
to the console to display it as an ASCII character.

con_out Sends a numeric value to the console
none con_out(byte data) token.lib
none con_out(word data) token.lib
none con_out(long data) token.lib

The value "data" is displayed on the console in decimal format. Long values are signed using
the two's complement convention.

con_string Send a string of bytes out console pin
none rs_string(word string_addr) cn_str.lib

This function sends a string of characters located in EEprom out of a general purpose pin in
console serial format. The pin, baud_rate, and levels are defined by the rs_param_set
function. The string must be null-terminated. The Debugger can recieve this type of signal.

con_fmt Sends a formatted long to the console
none con_fmt(long value, word format) cn_fmt.lib

This function formats the long argument value into a string of characters on the basis of the
string format. This function allows control of leading and trailing zeros, decimal point
placement, and dollar sign. The format string is a null terminated string contained in
EEprom. The characters that have special meaning are as follows:

$ Print a '$' character in the output
Print a number if this or a previous digit was non-zero
0 Print a number even zero, forces following #'s to print
X Do not print a number digit, but account for its position
. Print a decimal point

6 Standard Library FBASIC TICkit

129 Protean Logic

Examples:

; test for a console and add two signed numbers

FUNCTION none main
 LOCAL long val1
 LOCAL long val2
BEGIN
 rs_param_set(debug_pin)
 IF not(con_test())
 =(val1, con_in_long(0))
 =(val2, con_in_long(0))
 con_out(+(val1, val2))
 ENDIF
ENDFUN

6.15 System, Interrupt and Miscellaneous Functions
The system functions are used to break or re-establish communication with the debugger, to control
the interrupt detection, and to reset the TICkit under software control. Using the debug_on() function
while developing a program can be a very useful method of tracing a program. Often, the
programmer is only wishing to trace a small section of a program. By placing the debug_on()
function at the beginning of the section, the user can allow the program to operate at full speed until
it reaches the desired section, then the user can single step or watch variables for just the code in
question. When done tracing that section, the user can press 'E' of the debugger and the code will
again execute at full speed. This is often much faster than running a program in monitor code while
looking for a break point.

The interrupt capability of the TICkit allows a special function in the program to be called at the
request of an external device. Provided that the interrupts have been enabled, when the /IRQ input
line of the TICkit is brought low, immediately after the current TICkit token finishes executing, the
function named IRQ will be executed (vectored at EEprom location 0x0002 and 0x0003). The
interrupt is disabled as the IRQ function is called. Therefore, the program must re-enable it to sense
any additional interrupts. Usually the interrupts are re-enabled as the last line of the IRQ routine. The
TICkit62 has the added interrupt capability to sense multiple events caused by internal hardware
stimulus. For example, an interrupt can be generated when the Timer1 16bit counter rolls over. This
interrupt is useful to implement a real-time clock in background. For the TICkit62 there are three
interrupt vectors:

1. /IRQ pin input - when line is brought low and interrupt occurs (57 and 62)
2. Stack overflow - when RAM memory is exceeded this interrupt occurs (62)
3. Internal peripheral - when a pre-programmed peripheral condition occurs (62)

The names of the functions call by each of these vectors is defined in the token library for each
processor. By default they are: "irq", "stack_overflow", and "global_int" respectively.

FBASIC TICkit 6 Standard Library

Protean Logic 130

The internal peripheral interrupt (global_int) can be caused by multiple event sources. To help limit
what events can cause this interrupt, and to determine what event caused an interrupt while servicing
it, mask registers and flag registers are used. Each bit of the mask and flag registers coorespond to an
event source. An event source will cause an interrupt only if its cooresponding mask bit is set,
otherwise that source is ignored. Likewise, if multiple event sources are allowed to generate the
interrupt, the servicing routine will need to determine which source caused this interrupt. This is done
by examining the contents of the flag registers. Only the event which caused the interrupt will have
its cooresponding bit set. Also, the flag for the interrupt source will need resetting at the end of the
interrupt service routine.

debug_on Turn debug protocol on
none debug_on() token.lib

Attempts to establish a connection to a debugger on the console computer. The TICkit will
try to establish this connection for approximately 1.5 seconds.

debug_off Turn debug protocol off
none debug_off() token.lib

Terminates the debug connection with the console. Forces the program to execute in fast,
un-monitored mode.

irq_on Turn interrupt sensing on
none irq_on() token.lib

Enables the Interrupt Service Requests. A low level on the /IRQ line will cause execution to
resume at the function named "IRQ" immediate following the execution of the current token.
Because the interrupt service flag is disabled by each service request, the service request
routine will normally re-enable interrupts on exit by executing this function. This function
also enables hardware interrupt processing on the TICkit62. Therefore, when using this
function, be sure that all internal global interrupts are disabled, or the appropriate
"global_int" function exists for handling TICkit62 interrupts.

irq_off Turn interrupt sensing off
none irq_off() token.lib

Disables the Interrupt Request line. Use this function to prevent any interrupt from
distracting the TICkit from a time sensitive program.

reset Resets the token interpreter
none reset() token.lib

Simulates a power on start.

6 Standard Library FBASIC TICkit

131 Protean Logic

int_cont_set Sets control byte for global_int (TICkit62)
none int_cont_set(byte control_bits) token.lib

This function sets the bits of the TICkit62's global interrupt control register. This register
contains the status and mask of several interrupts and also masks the peripheral interrupts.
The bit assignments for the interrupt control register are as follows (standard defines for
these detailed in the DEFINES section) :

bit 0 = Set if bits 4 thru 7 of the Data Port have changed.
bit 1 = Set if bit 0 of the Data Port has received an edge.
bit 2 = Set if RTCC (tmr0) has overflowed.
bit 3 = Enable Data port bits 4-7 change interrupt
bit 4 = Enable Data port bit 0 edge interrupt
bit 5 = Enable RTCC (tmr0) overflow interrupt
bit 6 = Enable peripheral interrupt sources.
bit 7 = Unused, must be set to zero.

int_cont_get Gets control byte for global_int (TICkit62)
byte int_cont_get() token.lib

This function gets the bits of the TICkit62's global interrupt control register. This register
contains the status and mask of several interrupts and also masks the peripheral interrupts.

int_flag_set Sets Peripheral Flag byte (TICkit62)
none int_flag_set(byte flags) token.lib

This function sets the bits of the TICkit62's peripheral interrupt flag register. This register
contains the status of peripheral interrupts. Usually, this function is simply used to clear a
serviced interrupt. Defines for each bit's meaning are listed in the DEFINES section of this
chapter. The bits are as follows:

bit 0 = Timer 1 overflow.
bit 1 = Timer 2 overflow.
bit 2 = CCP1 module interrupt (Capture or Compare)
bit 3 = SSP module (I2C port I/O)
bit 4 = not used
bit 5 = not used
bit 6 = not used
bit 7 = not used

int_flag_get Gets Peripheral Flag byte (TICkit62)
byte int_flag_get() token.lib

This function gets the bits of the TICkit62's peripheral interrupt flag register. This register
contains the status of peripheral interrupts. This function is used to determine which
peripheral interrupts are pending and need service.

FBASIC TICkit 6 Standard Library

Protean Logic 132

int_mask_set Sets Peripheral Mask byte (TICkit62)
none int_mask_set(byte mask) token.lib

This function sets the bits of the TICkit62's peripheral interrupt mask register. This register
contains the masks of peripheral interrupts. Only the devices which their bits set will
generate an interrupt. Bits map the same as the peripheral flag register.

int_mask_get Gets Peripheral Mask byte (TICkit62)
byte int_mask_get() token.lib

This function gets the bits of the TICkit62's peripheral interrupt mask register. This register
contains the masks of peripheral interrupts.

Examples:

; handle an interrupt - also uses debug_on to create a type
; of fast break point. Program executes at full speed until
; debug_on.

FUNCTION none irq ; this irq handler will display the
 ; string then connect to a debugger
 ; if it is present, then, under debug
 ; control, return to the main process.
BEGIN
 con_string("responding to interrupt\r\l");
 debug_on()
 irq_on()
ENDFUN

FUNCTION none main
BEGIN
 rs_param_set(debug_pin)
 irq_on()
 REP
 LOOP
ENDFUN

6.16 Peripheral Control Functions
The processors on which the FBASIC interpreters are implemented have special I/O resources for
performing more complex tasks. These resources, called peripherals, can operate while the main
processing function is doing something else. The TICkit 57 has the RTCC (Tmr0) as its only
peripheral device. As an example, the RTCC can count pulses or clock cycles while the program
continues to operate. The Functions used to control these devices would not normally be considered
part of a standard library. However, because of the inteded use of the processors for control
applications, the functions controlling the peripherals are assumed to be central to the task. For this
reason, peripheral control functions are included in FBASIC's standard library. Because the

6 Standard Library FBASIC TICkit

133 Protean Logic

availability of peripherals is very processor dependent, be sure to code with only the resources of the
processor you will eventually use.

The TICkit 57 has only the RTCC for a peripheral. It's functions are outlined in the timing section of
this chapter.

The TICkit 62 has the RTCC timer, but it also has two more timers, a module which can be
programed to compare the count in timer 1 with a preset value and interupt the processor on a match,
or it can capture the count of timer 1 when the CCP pin is activated, or it can use timer2 to generate a
10bit PWM signal and output that signal on the CCP pin. The TICkit 62 also has an SSP (synchronys
serial port) for use as an I2C port. All of these resources are controlled by writing special control and
data registers. Once setup, the peripheral devices operate in background while the program proceeds.

tmr1_cont_set Sets TMR1 control register (TICkit62)
none tmr1_cont_set(byte control_bits) token.lib

This function sets the bits of the TICkit62's timer 1 control register. The meanings of the bits
of this register are as follows:

bit 0 = Enables timer1 counter
bit 1 = When set clk is A0 pin, otherwise clk is OSC/4
bit 2 = Synchronizes clk with OSC when set
bit 3 = Enables oscillator circuit on A0 and A1
bit 4 = Bits 4 and 5 select prescale value of 8(11), 4(10),
bit 5 = 2(01) or 1(00)
bit 6 = not used
bit 7 = not used

tmr1_cont_get Gets TMR1 control register (TICkit62)
byte tmr1_cont_get() token.lib

This function gets the bits of the TICkit62's timer 1 control register.

tmr1_count_set Sets TMR1 count (TICkit62)
none tmr1_count_set(word count) token.lib

This function sets the count of the TICkit62's timer 1.

tmr1_count_get Gets TMR1 count (TICkit62)
word tmr1_cont_get() token.lib

This function gets the count of the TICkit62's timer 1.

tmr2_cont_set Sets TMR2 control register (TICkit62)
none tmr2_cont_set(byte control_bits) token.lib

This function sets the bits of the TICkit62's timer 2 control register. The meanings of the bits
of this register are as follows:

bit 0 = Bits 0 and 1 select prescale value of 1(00), 4(01)

FBASIC TICkit 6 Standard Library

Protean Logic 134

bit 1 = or 16(1x)
bit 2 = Enables timer 2 counting
bit 3 = Bits 3,4,5, and 6 select the postscale divisor
bit 4 = 0000 is divide by 1
bit 5 = while 1111 is divide by 16
bit 6 = Therefore, divisor = postscale setting + 1
bit 7 = not used

tmr2_cont_get Gets TMR2 control register (TICkit62)
byte tmr2_cont_get() token.lib

This function gets the bits of the TICkit62's timer 2 control register.

tmr2_count_set Sets TMR2 count (TICkit62)
none tmr2_count_set(byte count) token.lib

This function sets the count of the TICkit62's timer 2.

tmr2_count_get Gets TMR2 count (TICkit62)
byte tmr2_count_get() token.lib

This function gets the count of the TICkit62's timer 2.

tmr2_period_set Gets TMR2 period register (TICkit62)
none tmr2_period_set(byte period) token.lib

This function sets the contents of the TICkit62's timer 2 period register.

tmr2_period_get Gets TMR2 period register (TICkit62)
byte tmr2_period_get() token.lib

This function gets the contents of the TICkit62's timer 2 period register.

ccp1_cont_set Sets CCP1 control register (TICkit62)
none ccp1_cont_set(byte control_bits) token.lib

This function sets the bits of the TICkit62's CCP1 control register. The meanings of the bits
of this register are as follows:

bit 0 = Bits 0,1,2 and 3 select the mode of the CCP
bit 1 = 0000 = off, 01xx = capture mode
bit 2 = 10xx = compare mode, 11xx = PWM mode
bit 3 = bits 0,1 modify capture and compare modes.
bit 4 = In PWM mode this is the lowest order duty bit
bit 5 = In PWM mode this is the next lowest order bit
bit 6 = not used
bit 7 = not used

6 Standard Library FBASIC TICkit

135 Protean Logic

ccp1_cont_get Gets CCP1 control register (TICkit62)
byte ccp1_cont_get() token.lib

This function gets the bits of the TICkit62's CCP1 control register.

ccp1_reg_set Sets CCP1 register (TICkit62)
none ccp1_reg_set(word contents) token.lib

This function sets the contents of the TICkit62's CCP1 register. Depending on the mode of
the CCP this can be a comparison value for timer1, a result of a capture on timer1, or the
lower 8 bits of the CCP1 register are the higher 8 bits of the PWM duty cycle.

ccp1_reg_get Gets CCP1 register (TICkit62)
byte ccp1_reg_get() token.lib

This function gets the contents of the TICkit62's CCP1 register.

ssp_cont_set Sets SSP control register (TICkit62)
none ssp_cont_set(byte control_bits) token.lib

This function sets the bits of the TICkit62's SSP control register. The meanings of the bits of
this register are as follows:

bit 0 = Bits 0,1,2 and 3 select the mode of the SSP
bit 1 = 01xx = slave only modes
bit 2 = 10xx = master support with slave modes
bit 3 = See defines for complete mode list.
bit 4 = Clk enable (allows clk to go high)
bit 5 = Enable the SSP (switches control of A3 and A4)
bit 6 = Receive Overflow flag
bit 7 = Write Collision detected

ssp_cont_get Gets SSP control register (TICkit62)
byte ssp_cont_get() token.lib

This function gets the bits of the TICkit62's SSP control register.

ssp_buffer_set Sets SSP Buffer (TICkit62)
none ssp_buffer_set(byte contents) token.lib

This function sets the contents of the TICkit62's SSP buffer. Effectively, this function is used
to transmit data on the I2C port.

ssp_buffer_get Gets SSP Buffer (TICkit62)
byte ssp_buffer_get() token.lib

This function gets the contents of the TICkit62's SSP buffer. This reads data received from
the I2C port.

FBASIC TICkit 6 Standard Library

Protean Logic 136

ssp_addr_set Sets SSP Address (TICkit62)
none ssp_addr_set(byte contents) token.lib

This function sets the contents of the TICkit62's SSP address register. Interupts and data
reception/transmission only takes place after a start bit and a match to this address on the
I2C port.

ssp_addr_get Gets SSP Address (TICkit62)
byte ssp_addr_get() token.lib

This function gets the contents of the TICkit62's SSP address register.

ssp_status_get Gets SSP Status (TICkit62)
byte ssp_status_get() token.lib

This function gets the contents of the TICkit62's SSP status register. The meanings of the
bits of this register are as follows:

bit 0 = Receive Buffer full (byte in buffer for reading)
bit 1 = Update Address required (place in ssp_address)
bit 2 = Current message is a read message
bit 3 = Start bit was detected last
bit 4 = Stop bit was detected last
bit 5 = Last byte received was a data byte (not an address)
bit 6 = not used
bit 7 = not used

Examples:

; Sample program to illustrate using TICkit62 SSP to do
; I2C slave operations. Keep in mind that the master in this
; system must transmit data with spacing between bytes. If
; using a TICkit as the master, use the sim_i2c library to
; generate the signals.

DEF tic62_a
LIB fbasic.lib

GLOBAL byte iic_addr 0b
GLOBAL byte iic_comm 0b

FUNC none irq
BEGIN
 irq_on()
ENDFUN

6 Standard Library FBASIC TICkit

137 Protean Logic

FUNC none global_int
 LOCAL byte iic_data
BEGIN
 =(iic_data, ssp_buffer_get())
 IF b_and(ssp_stat_get(), ssp_stat_data)
 IF iic_comm
 con_out_char('\r')
 con_out_char('\l')
 con_out_char('A')
 con_out(iic_addr)
 con_out_char(' ')
 con_out(iic_comm)
 con_out_char(' ')
 con_out(iic_data)
 ELSE
 =(iic_comm, iic_data)
 ENDIF
 ELSE
 IF b_and(ssp_stat_get(), ssp_stat_read)
 ssp_buffer_set(0x18b)
 ELSE
 =(iic_addr, iic_data)
 =(iic_comm, 0b)
 ENDIF
 ENDIF

 ssp_cont_set(ssp_mode_slave7 | ssp_con_clken |~
 ~ssp_con_enable)
 int_flag_set(0b)
 irq_on()
ENDFUN

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 int_cont_set(int_con_periphe)
 int_mask_set(int_mask_ssp)
 int_flag_set(0b)

 ssp_addr_set(0x80b)
 ssp_cont_set(ssp_mode_slave7 | ssp_con_clken |~
 ~ssp_con_enable)
 irq_on()

 REP
 LOOP
ENDFUN

FBASIC TICkit 6 Standard Library

Protean Logic 138

Examples:

; This program will generate a square wave of varying duty
; cycle on the CCP1 pin. This method is used to perform PWM
; control of motors etc.

DEF tic62_a
LIB fbasic.lib

GLOBAL word duty ; only the lower 8 bits are used.

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 =(duty, 0)
 pin_low(pin_a2)
 tmr2_cont_set(tmr2_con_on)
 tmr2_period_set(255b) ; determines frequency
 ccp1_cont_set(ccp_pwm)
 REP
 ccp1_reg_set(duty)
 delay(10)
 ++(duty)
 LOOP
ENDFUN

6 Standard Library FBASIC TICkit

139 Protean Logic

6.17 Constant Symbols Defined in Libraries
DEFINE buss _8bit 0y10000000b
DEFINE buss_4two 0y01000000b
DEFINE buss_4bit 0y00000000b

DEFINE debug_pin 0xDFb
DEFINE rs_invert 0x80b
DEFINE rs_19200 0x60b
DEFINE rs_9600 0x50b
DEFINE rs_4800 0x40b
DEFINE rs_2400 0x30b
DEFINE rs_1200 0x20b
DEFINE rs_600 0x10b
DEFINE rs_300 0x00b

DEFINE rs_cont_brk 128b
DEFINE rs_cont_addr 64b
DEFINE rs_cont_wait 32b
DEFINE rs_cont_hand 16b

DEFINE pin_A7 0x0Fb
DEFINE pin_A6 0x0Eb
DEFINE pin_A5 0x0Db
DEFINE pin_A4 0x0Cb
DEFINE pin_A3 0x0Bb
DEFINE pin_A2 0x0Ab
DEFINE pin_A1 0x09b
DEFINE pin_A0 0x08b

DEFINE pin_D7 0x07b
DEFINE pin_D6 0x06b
DEFINE pin_D5 0x05b
DEFINE pin_D4 0x04b
DEFINE pin_D3 0x03b
DEFINE pin_D2 0x02b
DEFINE pin_D1 0x01b
DEFINE pin_D0 0x00b

DEFINE false 0x00b
DEFINE true 0xFFb

DEF tmr1_con_on 0y00000001b ; turn on timer1
DEF tmr1_con_ext 0y00000010b ; external, rising edge source
DEF tmr1_con_sync 0y00000100b ; synchronize to osc clk
DEF tmr1_con_osc 0y00001000b ; enable oscillator
 ; (inverter and feedback)
DEF tmr1_con_pre1 0y00000000b ; prescaler divide by 1

FBASIC TICkit 6 Standard Library

Protean Logic 140

DEF tmr1_con_pre2 0y00010000b ; prescaler divide by 2
DEF tmr1_con_pre4 0y00100000b ; prescaler divide by 4
DEF tmr1_con_pre8 0y00110000b ; prescaler divide by 8

DEF tmr2_con_on 0y00000100b ; turn on timer2
DEF tmr2_con_pre1 0y00000000b ; prescaler divide by 1
DEF tmr2_con_pre4 0y00000001b ; prescaler divide by 4
DEF tmr2_con_pre16 0y00000010b ; prescaler divide by 16
DEF tmr2_con_post 0y01111000b ; mask for postscaler
 ; (divide by value)

DEF ssp_mode_slave7 0y00000110b ; slave only - 7bit address
DEF ssp_mode_slave10 0y00000111b ; slave only - 10bit
DEF ssp_mode_master 0y00001011b ; master support
 ; - slave disabled
DEF ssp_mode_mast7 0y00001110b ; master support
 ; - slave 7bit address
DEF ssp_mode_mast10 0y00001111b ; master support
 ; - slave 10bit address
DEF ssp_con_clken 0y00010000b ; clock enable
 ; (not held low)
DEF ssp_con_enable 0y00100000b ; SSP module enabled
DEF ssp_con_overflow 0y01000000b ; indicates receiver overflow
DEF ssp_con_collide 0y10000000b ; collision during
 ; write to transmit reg

DEF ssp_stat_full 0y00000001b ; receive buffer is full
DEF ssp_stat_addr10 0y00000010b ; 10 bit address to be read
DEF ssp_stat_read 0y00000100b ; current buss cycle is read
DEF ssp_stat_start 0y00001000b ; IIC start bit last received
DEF ssp_stat_stop 0y00010000b ; IIC stop bit last received
DEF ssp_stat_data 0y00100000b ; data byte in register
 ; (not address)

DEF ccp_off 0y00000000b
DEF ccp_capt_fall 0y00000100b
DEF ccp_capt_rise 0y00000101b
DEF ccp_capt_rise4 0y00000110b
DEF ccp_capt_rise16 0y00000111b
DEF ccp_comp_set 0y00001000b
DEF ccp_comp_clear 0y00001001b
DEF ccp_comp_int 0y00001010b
DEF ccp_comp_event 0y00001011b ; reset timer1 for CCP1
 ; - start A/D for CCP2
DEF ccp_pwm 0y00001100b
DEF ccp_pwm_bit0 0y00010000b
DEF ccp_pwm_bit1 0y00100000b

6 Standard Library FBASIC TICkit

141 Protean Logic

DEF int_con_periphe 0y01000000b ; all other peripherals enable
DEF int_con_tmr0e 0y00100000b ; timer 0 overflow enable
DEF int_con_pind0e 0y00010000b ; pin_d0 interrupt enable
DEF int_con_portde 0y00001000b ; data port change enable
DEF int_con_tmr0f 0y00000100b ; timer 0 overflow flag
DEF int_con_pind0f 0y00000010b ; pin_d0 interrupt flag
DEF int_con_portdf 0y00000001b ; data port change flag

DEF int_flag_ssp 0y00001000b ; mask for SSP (IIC) port
DEF int_flag_ccp1 0y00000100b ; mask for CCP1 sources
 ; (compare or capture)
DEF int_flag_tmr2 0y00000010b ; mask for timer2 roll-over
DEF int_flag_tmr1 0y00000001b ; mask for timer1 roll-over

FBASIC TICkit 6 Standard Library

Protean Logic 142

7 The Console Program
7.1 Turning your computer into a dumb terminal.
Often, the TICkit is programmed to run with no need to display or get keyboard information. When
this is not the case, however, your console computer can act as a display and keyboard for the TICkit.
This convenient little trick is performed by running the "console.exe" program on the console
computer. From your DOS prompt, type:

console <serial_port_number >

Now any console functions contained in the program in the TICkit will talk to the Console computer.

When you want your computer back, hold down the Control key and press the letter C (<ctrl-C>).
Occasionally, the Console program will be waiting for some handshaking from the TICkit. If the
TICkit was physically disconnected or reset at precisely the wrong point, the Console may not
respond to <ctrl-C>. Simply re-boot or reset your console computer if this happens.

7.2 The Console Protocols (home brew TICkit I/O)
You can write your own types of Console programs, also. The handshake protocol for the TICkit is
quite simple. The timing requirements are a bit fast, so make any loops tight to ensure that the
Console commands are all recognized. The protocols for the nine console functions is as follows:

9600 baud - half duplex - 8 bit, 1stop bit, no-parity.
Assumes that the xmit and receive pins are physically connected.
TICkit will wait approx. .5 seconds for response after initial byte.
Most significant bytes are sent first.

test_console: TIC:7F, con:8A.
8bit_char_disp: TIC:59, con:90, TIC:val.
8bit_num_disp: TIC:51, con:90, TIC:val.
16bit_num_disp: TIC:52, con:90, TIC:val, con:90, TIC:val.
32bit_num_disp: TIC:54, con:90, TIC:val, con:90, TIC:val, con:90, TIC:val,

 con:90 , TIC:val.
8bit_char_in: TIC:69, con:val.
8bit_num_in: TIC:61, con:val.
16bit_num_in: TIC:62, con:val, TIC:90, con:val.
32bit_num_in: TIC:64, con:val, TIC:90, con:val, TIC:90, con:val, TIC:90,

 con:val.

7 Console Program FBASIC TICkit

143 Protean Logic

8 The Debug Program
8.1 What exactly does the debugger do?
The debugger is a program which runs on the Console. It communicates, via the serial port and
cable, with the TICkit. The debugging program can download a program to the TICkit, or verify a
program contained in the TICkit. The debugger can display information sent by the TICkit as
Console output; or it can get information from the keyboard of the console computer and send it to the
TICkit program as console input, just like the Console program in the last chapter. The main purpose
for the debugger, however, is to aid in the debugging of a program. When debugging, a line-by-line
display of what is happening as the program executes appears on the Console screen. Before each line
is executed, the source text for that line is displayed followed by a request for a debug command. The
user can execute that line, part of that line, or step into a sub-function of the line. The user can also
examine the contents of a memory variable or change the value of a memory variable. This cycle is
repeated for each line as it is encountered during the execution of a program. By carefully watching
what happens as the program executes, sources of error show themselves quite readily.

8.2 The Debugger's Screen Format
C:\TICKIT>debug62 2 first
TICkit DEBUG62 program - Protean Logic - (c) 1995
Console Active, attached via COM2 to TICkit...

=====================|Debug Dialog|============================|Watch Points|===
*** Reset TICkit for debugging now...	
***************** Command:	
Connected to TICkit...	
TOKEN:E0 PC:002E Command:	
=================|TKN:first |=|SYMBL|========================|MP: |=|SP: |==

When the debugger starts, the screen is split into two parts. The top part is the Console display area.
This area, although smaller, acts just as the screen of the Console program in the last chapter. The
bottom half of the screen is a split box. The left side of this box is called the "Debug Dialog" area.
The right side of the box is called the "Watch Points" area.

The bottom of the dialog area displays the name of the file which is being debugged, if given, as well
as the words TOKEN or SYMBL depending on whether or not a symbol file could be located with the
same root name as the token file. Symbolic program line information and variable names are only
available when the word SYMBL appears at the bottom of the dialog area. The bottom of the watch
points area displays the current value of the "memory pointer (MP)" and the value of the "stack
pointer (SP)". These values indicate how much RAM is available for use in the TICkit at each point

FBASIC TICkit 8 The Debug Program

Protean Logic 144

of program execution. If ever the MP is greater than or equal to the SP, a STACK OVERFLOW error
message is reported in the dialog area.

8.3 Debug Commands (doing what you want to do)
=====================|Debug Dialog|============================|Watch Points|===
F=specify symbol and token Files	
D=Download to TICkit C=Compare file with TICkit	
V=memory Value access W=Watch value manipulation	
E=Execute and disconnect M=execute and Monitor program	
B=Breakpoint manipulation for program monitoring	
S=Step into function P=Pass over function	
T=Trace through the program and display tokens	
R=Reset the TICkit, restart the program at its beginning	
Q=Quit debug, return to DOS (TICkit will run program)	
=================|TKN:first |=|SYMBL|========================|MP: |=|SP: |==

The first command to become familiar with is the '?' command. This will display a brief key to the
debug commands in the debug dialog box as shown above.

The fourteen, one letter commands are all that are required to debug a TICkit program. The summary
of these function follows:

?: Display a summary of commands. This command is useful while becoming
familiar with the debug program. This command has no effect on the status of
the program being debugged, but simply provides a simple on-line
reference for the user and suggests which command might be useful at a
given point in debugging a program.

F: Specify a file name to associate with the program in the TICkit. Only a root
name is required. When the file name is entered, the debugger will attempt
to locate both a token file and a symbol file of the name given. The token file
will be used by the Download (D) and compare (C) commands. The symbol
file contains all symbolic information like source line information and global
variable name and size.

D: Download the token file to the TICkit. This command will ask the user for a Yes
(Y) before continuing to prevent an accidental download. After the file
downloads, the debugger will automatically do a comparison of the TICkit
EEprom with the token file to verify the file was downloaded correctly.

8 The Debug Program FBASIC TICkit

145 Protean Logic

C: Compare the token file against the contents of the TICkit. Only success or
failure is reported. To prevent commercial programs from being pirated
from a programmed TICkit, the download and compare debug commands
only send information to the TICkit. In other words, there is no way to read
the contents back from the TICkit.

V: Allow the user to look at and optionally change a value in the TICkit memory.
When the command is entered, a line is displayed in the dialog area which
asks for the value's address or name. At this point a TICkit RAM address or a
symbolic name for a global variable from the source file may be entered. If
an address is entered, the user will also be asked for a size of the memory
value. Enter 'B' for a byte, 'W' for a word, or 'L' for a long. If a symbol name is
entered, the size of the variable will be known automatically. The user may
also simply press return when asked for an address or symbol name. This will
cause a list of global symbols to be displayed in the dialog area. A variable
can be chosen from this list by using the arrow keys and the <return> key.
However the variable or address is entered, the debug program will display
the current contents of the address followed by a colon. The user may enter a
new value or press return to leave the value unchanged.

W: Manipulate Watch points. This function is used to maintain a table of up to five
variables that the debugger should watch. Each value that is watched will
display automatically in the watch point area of the debug screen. When the
user asks to manipulate watch points, the debugger will display a line in the
dialog area asking for the watch point number. This is a value, one through
five, that specifies a watch point. After this number is entered, A list of
variables will display in the dialog area. Use the arrow keys and the <return>
key to select which variable to watch. At this point the debugger will
automatically display the value for the memory location. A watch point can be
removed by entering the watch point number preceded with a minus sign.

E: Executes the program contained in the TICkit EEprom from the current
program counter (PC) location. The TICkit will stop asking for debug
commands, effectively disconnecting from debug, at this point. Console
information will continue to be communicated to/from the TICkit. The
program within the TICkit may restore connection with the debugger by
executing the "debug_on" function. Any breakpoints will be ignored while
there is no debug connection to the TICkit. To execute a program but retain
the debug connection, use the monitor (M) debug command instead of the
execute (E) command.

FBASIC TICkit 8 The Debug Program

Protean Logic 146

M: Monitors the TICkit program while it executes. This method of program
execution is much slower than normal TICkit execution, but maintains the
debug connection between the debugger and the TICkit. This allows the
debugger to update memory value watch points (when implemented), and to
stop program execution when a break point is detected. An alternative to
using the Monitor mode, is to modify the program and place debug_on() and
debug_off() function calls in key areas of the program. The debug_on
function has the same effect as a breakpoint. By using the monitor function in
conjunction with the debug_on method, a program can be debugged much
faster and easier.

B: Manipulate Break points. Break points provide a means of interrupting
program execution at predefined points in a program. This is often useful in
larger programs where only a certain part of a program needs to be
debugged. When a program is executing in monitor mode, execution will
halt as a source line marked as a break point is about to be executed and the
user will be asked for a debug command. Up to 10 break points can be active
at one time. Setting breakpoints is very easy. After the user requests to
manipulate break points, a list of current breakpoints is displayed in the
debug dialog area. The debugger will then ask for the break point command.
Enter the number of the break point to modify. At this point a list of source
lines will display in the dialog area. Scroll through this list to select the
desired line as a break point using the vertical arrow keys and the page
up/down keys. Press <enter> to select the desired line or <esc> to cancel
the break point selection. Break points can be removed by entering the
number of the break point preceded by a minus sign at the break point
command. Breakpoints can also be specified using the "default breakpoints
within symbol file" method. In this method, the user edits the .SYM file for the
program to be debugged. Any line which is to have a break point should
have a '+' placed as the first character of the desired source line. Using this
method will cause the debugger to automatically load the break points for
these lines when the file is selected.

S: Step into subroutine. This command will execute the current line and display
the next source line either in a subroutine or the next consecutive line of the
program. This command is used to test all levels of the source code.

8 The Debug Program FBASIC TICkit

147 Protean Logic

P: Pass over subroutine. The pass (P) and the step (S) debug commands are
almost identical, but differ in the way they handle calls to subroutines. The
Pass command will execute the subroutine, but will not display any source of
the subroutine. The next source line displayed, and the next opportunity to
enter a debug command, will not occur until the source line immediately
following the subroutine call is about to be executed.

T: Trace tokens. This command will execute the next token and ask for another
debug command. Use this command for debugging programs that do not
have an accompanying symbol file, or to see exactly what is happening at
each token of a program.

R: Reset the TICkit. Restores all I/O pins of the TICkit to power-on status and
starts the program from the initial point.

Q: Quits the debug program. The user will return to the DOS prompt, or other
calling program if the debugger was started from a launcher. This will
implicitly cause the TICkit to execute when the debug connection times out in
the TICkit.

These commands are simple but effective for tracking down run-time bugs. Users will use the Pass (P)
and Step (S) commands most frequently. Try out the debugger on the sample program "first" to get a
feel for how to trace through a program.

A program can also be modified to include "debug_on" and "debug_off" function calls. This can be
useful for speeding up the debugging process. Using these functions in areas of the program that need
debugging can be great for skipping larger sections of a program that either do not need debugging,
or which must run at full speed for some reason.

The <esc> key or the <ctrl-C> key can also be useful at various points in debugging. They can be
used to cancel a command. This might be particularly useful when a request for a debug command is
not displayed. For example, the <ctrl-C> key can be used to exit the debug program while the
"Execute" command is active and the target processor is running.

FBASIC TICkit 8 The Debug Program

Protean Logic 148

9 The Compiler Program
9.1 How to invoke the compiler...
The Compiler is definitely the most complex of all the programs in the FBASIC TICkit package, and
yet it is probably the easiest to use. Simply enter the word FBASIC at the command prompt followed
by the name of the primary source file to compile.

The source file is called "primary" because there may be multiple source files for a program through
the use of the LIBRARY and INCLUDE statements in the primary source file. The primary source
file is the only source file in the program not referenced by any other source file. The primary source
file references all the other files.

9.2 The FBASIC command line
FBASIC <source_file_name> [<symbol_name> <symbol_contents>]

In our "first.bas" example, the user would type:

fbasic first

The compiler will start and report the progress of the compile. If the compiler finds any problems,
error or warning messages are displayed. In the case of error messages, no final token file or symbolic
file will be created. Warnings allow the compile to continue, but put the programmer on notice that a
possibility of error in the source file(s) exist. The best programming practice is to write programs that
do not generate warnings or errors.

9.3 What do the error messages really mean?
Error messages can be a bit cryptic sometimes. Often this is because the compiler is not able to
determine the desired meaning of a line so the report of the error makes little sense to the
programmer. However, examination of error message reveals that there are four distinct pieces of
information in every error or warning report.

ERROR: LCD_FMT.LIB(37) Unknown expression.

The above error message is typical of the error reports from the compiler. The first word indicates is
the error report is a true ERROR or if it is just a WARNING. The second word is the name of the
source file where that the error was discovered. Next is a number enclosed in parenthesis. This
number is the number of the errant line in the file named. The line number may be the most useful
information in an error report because it allows the programmer to find and examine the line directly
with a text editor. The remaining part of an error report gives the programmer some hint of what is
wrong with the line. Often, a single error will produce several error reports since the compiler is not
really sure what is wrong with the line. After all the source files have been scanned for errors, a final
count of error and warning producing lines is displayed. Only the number of lines with errors and
warnings are reported, not the number of error reports. This is usually a more accurate indication of
the number of actual errors in a program.

9 The Compiler Program FBASIC TICkit

149 Protean Logic

9.4 Command line Symbol Definition
The FBASIC command line can also be used to define one symbol within the compile. Defining a
symbol from the command line is useful for creating multiple programs from a single source file. For
example, a motor control program may be identical for two motors except for the RPM sampling
delay of the more powerful motor. A single source file for the two versions of the control program can
be used in which the delay is dependent on a symbol's definition. Simply compile each version with a
different symbol value. This technique is especially valuable as programs are modified throughout
their life. A single source file ensures that all versions of the program get updated with exactly the
same modifications. The program fragment and command line below illustrate this technique.

.

.

.
delay(rpm_sample_interval)

.

.

fbasic rpm_sample_interval=3000

9.5 The Symbol file: A neat debugging trick
The compiler will produce two files as output. One file is the token file. It will share the same root
name as the primary source file but with the extension ".tkn". This is the file which is downloaded to
the TICkit. The second file is the symbol file. It also shares the root name of the primary source file
but has an extension of ".sym". This file contains a list of all the source lines in the compile that
actually produce tokens and the address of the first token of the line where it will reside in the TICkit
EEprom. Also, a list of Global data symbols is contained in the symbol file which matches TICkit
RAM offsets with symbolic names and types.

All of this information is used by the debugger during tracing. The user may wish to edit this file to
place default break points in a complicated debug session. This is accomplished by placing an '+' at
the beginning of a line that is to have a break point where it appears in the symbol file. Special care
must be exercised when editing a symbol file. If any offsets are changed, or the order of lines is
altered, the debugger will become confused.

Default watch points can also be specified in a similar way. Simply place a '+' at the beginning of the
line which references the symbol to be watched in the symbol file. Only the first 10 break points will
be loaded, and only the first 5 watch points will be loaded using the symbol file method.

9.6 Compiler Method of Setting Break and Watch Points
The compiler can also set default Break and Watch points in the symbol file. Use the keyword,
"BREAK", at the beginning of any procedural line to associate a break point with that line. This
keyword has absolutely no effect on the token file, but places a '+" in the symbol file at that line. The
line that the BREAK keyword is used on must be code producing. For that reason, a REP statement or
similar statements are not able to trap the BREAK.

FBASIC TICkit 9 The Compiler Program

Protean Logic 150

Watch points can also be set in the source file. Use the keyword, "WATCH" at the beginning of any
GLOBAL or ALIAS statements. At this time, none of the debuggers are capable of watching local
values or parameters. Future debuggers may have this capability.

9 The Compiler Program FBASIC TICkit

151 Protean Logic

Appendix A: Circuits
A.1 Download Cable(s)

Pin 3 of the Console computer's 9 pin serial port is a transmit pin. When the Console is not
transmitting data, this pin will be low (-9 to -12 volts). This is an RS232 idle or stop bit state. The
4.7K ohm resistor acts as a pull down resistor to cause Pin 2 of the Console's port to see an idle state,
also. Pin 2 is the receive line for the console. The + pin of the DL port on the TICkit will also see the
-9 volt signal, but will shunt it to ground via the 330 ohm current limiting resistor. Either the TICkit
or the Console can raise the voltage on the data line by simply transmitting data. When the TICkit
transmits data, a voltage divider is formed between the PIC's output and the output of the Console's
RS232 output. Because the leg of the divider to the Console's output has a much greater resistance,
the PIC's output has priority over the Console's output.

When using this type of bi-directional data cable, The TICkit must be programmed to invert the
RS232 signal. The TICkit will use an open source output causing low outputs to be "high impedance",
while high outputs will be approximately 5 volts.

FBASIC TICkit Appendix A: Circuits

Protean Logic 152

A.2 Multi-drop connection of multiple TICkits.

Multiple TICkits can be connected together using a shared wire configuration. By matching the pull
down resistance to the characteristic impedance of the transmission line, long lengths can separate
TICkits while maintaining good data connection. An example of this type of connection is shown
above. At 9600 baud, reliable communication can be expected up to 1000 feet. Longer lengths can be
acheived using lower baud rates and/or better terminations.

This type of connection also requires that the RS232 configuration use the inverted option. The user
can adopt a protocol that uses framing errors to identify message addresses. By enabling stop bit
interrogation, the TICkit RS232 serial library can be made to generate, as well as detect, framing
errors. Using this sort of "9 bit" technique allows message headers to contain a special byte with a
framing error to distinguish the header from the data stream.

The TICkit 62 has a special function just for doing this type of network communication called
rs_recblock. The example below illustrates the program lines necessary for this type of
communication.

+++

TICkit #1 TICkit #2 TICkit #3

Isolate power supplies to eliminate ground loop difficulties.
Each resistor = 1/2 line impedance. Try 50 ohms.

Appendix A: Circuits FBASIC TICkit

153 Protean Logic

; Sending program for a TICkit 62

=(index, 0b)
rs_break () ; send a break level
rs_send(3b) ; send the node address. In this case,
 ; send to node 3 (note node 0 should not
 ; be used as this may be implemented as
 ; a broadcast to all nodes address in
 ; the future.
REP
 rs_send(buffer[index])
 ; data to be sent is containded in the
 ; array buffer with 10 bytes
 ++(index)
UNTIL >=(index, 10b)

; receiving program fragment
WHILE rs_recblock (0b, rs_cont_brk, 3b, buffer, 10b)
 ; the above will continue to loop until a 10 byte
 ; block is received without errors addressed to
 ; node 3. The resulting data will reside in buffer
 ; for use by the rest of the program.
LOOP

FBASIC TICkit Appendix A: Circuits

Protean Logic 154

A.3 The RC measurement Circuit

This circuit, coupled with the rc_measure function in the TICkit standard library, will measure either
a capacitor, a resistor, or both using a timing method. Rcharge and Rlimit resistors may be omitted,
but are useful for discussion purposes to preventing boundary problems. As a rule of thumb, the
product of Ctest multiplied by the sum of Rtest and Rlimit should equal one where the value of Ctest
is in farads, and the values of Rtest and Rlimit are in ohms. Therefore, a value for Ctest of 10uf, a
100k ohm value for Rtest and a value of 0 for Rlimit will produce approximately a 16 bit count range.
Accuracy with this measurement method can vary from tenths of percents at high R and C values to 5
percent for low R and C values. For this reason, using an Rlimit resistor of 1k ohms can generate
higher accuracy. Any count offset introduced as a result of Rlimit can be compensated for by
subtracting a constant from the resulting counts.

The RC measure function works by assuming that the capacitor is mostly discharged. This
assumption will be true provided that the pin was either held low for a short period, or if an RC
measurement was the last I/O function on this. The routine then charges the capacitor by internally
connecting the pin to a high logic level. The capacitor will charge rapidly with only the internal
resistance and any Rcharge resistance to slow its rate of charge. The routine monitors the voltage on
the output pin approximately every 10us. When the routine sees a high level voltage, the pin is held
high for an additional 768us. The pin is switched to an input and the time until the voltage on the
capacitor falls to a low level is the value returned as the RC measurement. The count is fairly linear
with respect to the Rtest and Ctest values, however, there are sources of error.

First, the initial threshold is only accurate to the RC measure routines ability to see the instant the
capacitor is charged to a high level. Because the pin is only sampled every 10us, there is a window of
error. By increasing the Rcharge resistance or by using a larger capacitor, the effect of this inaccuracy
can be minimized. The side effect of increasing these values is that it takes longer for the entire
measurement to be performed. Also, if the charging time is longer than .65535 seconds, a 0 will be
returned from the function.

Another source of error is caused by the divider formed between the Rtest and the Rinternal. If Rtest
is very low, the charging voltage may actually be less than the high threshold voltage. This will

TICkit

Ctest
+

Rtest

Rcharge

Rlimit
G n d

I/O pin

Rinternal

Appendix A: Circuits FBASIC TICkit

155 Protean Logic

prevent the Capacitor from charging to the high threshold. When this happens, the entire
measurement takes too long, and 0 is returned. By using an Rlimit of approx. 1K ohms, this
possibility is minimized.

Finally, the Rinternal value and the threshold for a high or low level on the pin is not precise. The
PIC was not designed to be a comparitor, so there will be shifts due to environmental conditions. The
RC measurement routine is useful for qualitative results, but the user must exercise caution to ensure
the required accuracy of data when using this routine.

Examples:

; This program repeatedly measures the RC network and displays
; the result on the console. In this example a 10K pot was
; used with a 10uf capacitor.

DEF tic62_a
LIB fbasic.lib

FUNC none main
BEGIN
 rs_param_set(debug_pin)
 REP
 con_out(rc_measure(pin_a0))
 con_out_char('\r')
 con_out_char('\l')
 delay(100)
 LOOP
ENDFUN

FBASIC TICkit Appendix A: Circuits

Protean Logic 156

Appendix B: TICkit57 Hardware
B.1 FBASIC TICkit57 schematic diagram

This diagram is the schematic for a 20MHz, 64kbit EEprom TICkit 57. The crystal can be either a
4MHz or a 20MHz, depending on which interpreter program is contained in the preprogrammed PIC.
The EEproms may be either 2Kbyte (24LC16) or 8Kbyte (24C65) versions, also depending on the
program in the PIC. For the 8Kbyte versions, up to 8 EEprom devices can share the same two lines
(SCL and SDA) from the PIC. The combination of the A0, A1, and A2 EEprom select lines
determine the addressing of the EEproms. For a single EEprom configuration, all lines A0, A1, and
A2 should be grounded, as shown.

Support for two EEproms addressed in blocks 0 and 1 is provided and each EEprom may be
individually write protected.

Appendix B: TICkit 57 FBASIC TICkit

157 Protean Logic

B.2 TICkit57 Specifications
Physical Dimensions: Overall; 2.5 x 2.5 inches,
Prototype area; 1.0 x 2.5 inches
Power Supply: Input; at least 5.7 volts @ 50ma Output 5.0 volts @ 900ma
Input/output: I/O pins can sink up to 40ma each or 150ma total. I/O pins can source 50ma
total.

See the Microchip™ PIC databook for I/O specifications. All PIC16C57 I/O parameters
apply to TICkit I/O lines. 4MHz versions use less power and can operate on a lower voltage.

B.3 Component Placement Diagram

The above diagram shows the locations of components and pins for the TICkit. One important point
to notice, is that the data group of outputs is numbered in the opposite order from the address group
pins. This is simply a placement issue, but there is a possibility of confusion when wiring components
to the TICkit.

Another point to notice is that the power and download connections are non-polarized two pin
connectors. The ground pin is always to the left, but the user must exercise caution when applying
power or when connecting the Download cable to ensure proper connection polarity. Reverse polarity
will not damage the TICkit however - DO NOT PLUG THE POWER INTO THE DOWNLOAD
PORT - this will destroy the TICkit interpreter IC.

Power Connection
(Gnd to left) Console/Downloader

Connection
(Gnd to left)

Fbasic TICkit Appendix B: TICkit 57

Protean Logic 158

Appendix C: TICkit 62 Hardware
C.1 TICkit 62 Schematic (40 pin module)

The TICkit 62 is available as a single IC or as a 40 pin module. The 40 pin module is a small printed
circuit board with a pin pattern and overall size that matches the standard size of a 40 pin DIP. The
schematic shown above is the circuit for the module. Notice that some of the top and some of the
bottom pins have no connections. Components D1, R4, and C3 form a basic reset circuit which
ensures that power is stable before the T62 processor IC begins to run. R3 pulls the /IRQ input high
to eliminate any false Interrupts. Interrupting devices connected to this pin should all be open
collector (open Drain) to allow wire or-ing of the inputs. R1 and R2 pull the I2C lines high. If you
will be using these lines to connect to other I2C devices which are 24 inches or more away from the
TICkit, pull the lines stronger with resistors as small as 1.2K ohms.

Table of Contents FBASIC Compiler

159 Protean Logic

C.2 TICkit 62 Project Board Schematic

The T62-PROJ project board provides a means for wiring up simple TICkit 62 based projects. A 40
pin IC socket accepts the TICkit 62 module. Additionally, a +5 vdc regulated power supply is
implemented on the board. Simply connect any DC source between 5.6 and 18 vdc into the coaxial
power connector (center -). Notice that input voltages greater than 6 volts will limit the power output
of the supply because of all the excess voltage the regulator needs to drop. This will overheat the
regulator if a larger current is being drawn and cause the regulator to automatically shut itself off.

A socket for an additional EEprom is supplied which has already been strapped for block 001 (the
second 8k block in the TICkit 62's address space). There is also a foil pattern for an Xtender or a
second TICkit 62 on the board. Simply solder in the Crystal, IC socket, and capacitors. I2C and other
connections will have to be hand wired to complete an Xtender installation.

FBASIC TICkit Appendix C: TICkit 62

Protean Logic 160

C.3 The TICkit 62 Module and IC pin diagrams

The schematic diagrams above show the internal connections are for both the 40 pin TICkit 62
module (on the left) and the TICkit 62 interpreter IC (on the right). The interpreter IC is available in
both a 28 pin PDIP and 28 pin SOIC package.

C.4 Making your own layout using the 28 pin IC
Using the IC alone is not recommended for your first experience the TICkit. However, for production
runs, or for smaller and lighter circuits, you will probably want to use the TICkit interpreter IC
instead of the module. There are few special considerations when using the IC alone but the following
list will make sure your project goes off without difficulty.

1. Connect both of the IC's ground pins to ground. On the module, only on pin needed to be
grounded, but the IC needs both pins to be grounded.

2. Keep the Oscillator wire runs as short as possible. Using a crystal time base is suggested over
a resonator to ensure that communication baud rates are as close as possible to the official
value. Variations between the sending and receiving communication time bases are
sometimes large enough to cause communications errors due to the way in which the async
start bit is detected. Even a resonator with an error as small as 1% may result in
communication if the sending device has a 1% time base error, and the baud rates are high
(9600 and above).

3. The reset circuit used in the module is probably more elaborate than required by most
applications. However, the reset pin should never be connected directly to Vdd. A resistor of
at least 10K should be used to prevent the IC from sensing a reset voltage greater than Vdd
which is the ICs internal programming condition.

4. The pull-up resistor for the EEprom bus (an I2C buss) need to be matched to the overall
length of the buss. If the bus length is quite long, pull up resistors should be used at both

General
Purpose
or Data
Bus pins

General
Purpose

or Address
Bus pins

General
Purpose
or Addr

Bus pins

General
Purpose
or Data
Bus pins

General
Purpose
or Address
Bus pins

General
Purpose
or Addr
Bus pins

Appendix C: TICkit 62 FBASIC TICkit

161 Protean Logic

physical ends of the bus. The 22K ohm resistors used by the module are sufficiently low for
lengths up to approximately 24 inches. The pull-up resistance should not be less than 2K.
For long EEprom bus lengths some experimentation should be done before a PCB is layed
out to ensure that the communications are reliable.

5. The Microchip PIC16Cxx ICs are very resistant to static discharge, but the clampling diodes
used for this protection can create problems if your circuit will ever be partially powered
down. Because all I/O lines are diode clamped to both Vss and Vdd, any voltage which
remains on an I/O line may inadvertantly power the IC. Series resistors or other similar
measures may be used to prevent the Interpreter IC from running or drawing power in a
power off situation.

6. The 24C65 EEproms used by the TICkit to store the user's program and data generates its
own programming voltages and timing. This is convenient from a development point of
view, but can be a source of problem when you do not want your program to accidentally be
written over. The TICkit has solved this problem by supplying power to the 24C65 from one
of its I/O pins. The forces the EEprom into reset during power up and down. Therefore, the
EEpower pin can and should be used as the system reset to keep all devices reset until the
controller is stable. You may also wish to use 24LC64 EEproms which have a hardware
write protect pin on them.

Using the IC instead of the module creates a more compact and less expensive design, so do not be
intimidates to venture into this type of project.

FBASIC TICkit Appendix C: TICkit 62

Protean Logic 162

B
Buss connection, 113, 136

Wiring Diagram, 63

C
CMOS logic IC

74HC00, 72
74HC138, 48
74HC151, 48
74HC74, 72

Compiler, 145
FBASIC.EXE, 5, 10
symbol file, 146

D
Debug, 140

Break Points, 85
Breakpiont manipulation, 143
Compare Command, 142
Download Command, 141
Execute Program, 142
File command, 141
help, 141
Monitor Execution, 143
Pass over function, 144
Reset, 144
Serial Port, 5, 139
Step into function, 143
Token Execute, 144
Value modify, 142
Watchpoint Manipulation, 142

Debugging, 126, 146
Breakpoints, 85, 143
DEBUG.EXE, 5
Tracing a program, 144
Watchpoints, 94, 140, 142

Development
ACQUIRE.EXE, 26
Compiling, 10
Console, 14, 123, 139, 148

Cycle, 7
Editing a program, 8, 10
tools, 10

Downloading, 3, 6, 141, 148

E
EEprom, 19, 109, 126, 153

Allocation, 19, 85
Arrays, 19
Initial Values, 89
Strings, 19
Structures, 19, 87

Errors, 145
Compiler, 8
Connecting, 7
Hidden Sources, 22

F
FBasic

@ (field connecter), 20
~ (Line extension), 17, 21
! (partial field), 20
Constants, 17, 18, 123
escape sequences, 16
exit_value, 21, 24, 26, 87, 91,

103
Expressions, 13
function overloading, 28
Line Labels, 16
Syntax, 16
Text strings, 19
Variable Scope, 21
Variables, 21

Fixed Point Arithmetic, 68
Functions

-- (decrement), 28, 99
== (equal to), 23, 26, 27, 104,

123
>= (greater or equal to), 104

Index FBASIC TICkit

163 Protean Logic

++ (increment], 12, 26, 27, 99,
111

<= (less or equal to), 104
<> (not equal to], 12, 105
<< (shift left), 26, 102
>> (shift right), 102
+ (addition], 21, 99, 101
= (assignment], 12, 26, 97
- (change sign), 99
/ (division), 98, 100
> (greater than), 101, 105, 106
< (less than), 105, 106
* (multiplication), 100
% (remainder), 100
- (subtraction), 98, 99, 109
and, 25, 102, 103
aport_get, 107
aport_set, 107
array_byte, 100
array_long, 101
array_size, 101
array_word, 101
atris_get, 107
atris_set, 107
b_and, 102
b_clear, 103
b_not, 102
b_or, 102
b_set, 102
b_test, 103
b_xor, 102
buss_read, 114
buss_setup, 62, 114
buss_write, 114
ccp1_cont_get, 131
ccp1_cont_set, 131
ccp1_reg_get, 131
ccp1_reg_set, 131
con_fmt, 69, 125
con_in_byte, 124
con_in_char, 124
con_in_long, 124, 125
con_in_word, 124

con_out, 125
con_out_char, 12, 98, 101,

111, 125
con_string, 125
con_test, 123
cycles, 34, 108, 109
debug_off, 127
debug_on, 127, 144
delay, 27, 32, 116
dport_get, 107
dport_set, 107
dtris_get, 107
dtris_set, 108
ee_read, 12, 110
ee_read_long, 110
ee_read_word, 110
ee_write, 110
i2c_read, 112
i2c_write, 112
int_cont_get, 128
int_cont_set, 127, 134
int_flag_get, 128
int_flag_set, 128
int_mask_get, 128
int_mask_set, 128
Irq_off, 127
Irq_on, 127
lcd_cont_wr, 115
lcd_data_wr, 115
lcd_fmt, 115
lcd_init4, 114
lcd_init8, 114
lcd_out, 115
lcd_string, 115
not, 102
or, 28, 102, 106
pin_high, 25, 28, 39, 106
Pin_in, 25, 33, 103, 107
pin_low, 25, 28, 103, 107
pulse_in_high, 108
pulse_in_low, 108
pulse_out_high, 25, 103, 108
pulse_out_low, 108

FBASIC TICkit Index

Protean Logic 164

rc_measure, 109, 151, 152
reset, 127, 128, 130, 131, 132
rs_break, 120, 150
rs_delay, 122
rs_fmt, 122
rs_param_get, 120
rs_param_set, 12, 28, 101, 119,

120, 123
rs_recblock, 121, 150
rs_receive, 27, 120, 121
rs_send, 27, 120
rs_stop_chek, 28, 122
rs_stop_ignore, 122
rs_string, 121
rtcc_count, 118
rtcc_ext_fall, 118
rtcc_ext_rise, 117
rtcc_get, 117
rtcc_int, 116
rtcc_int_16, 117
rtcc_int_256, 28, 117
rtcc_set, 28, 117
rtcc_wait, 28, 118
sleep, 117
ssp_addr_get, 132
ssp_addr_set, 132
ssp_buffer_get, 132
ssp_buffer_set, 132
ssp_cont_get, 132
ssp_cont_set, 132
ssp_status_get, 132
tmr1_cont_get, 130
tmr1_cont_set, 130
tmr1_count_get, 130
tmr1_count_set, 130
tmr2_cont_get, 130
tmr2_cont_set, 130
tmr2_count_get, 131
tmr2_count_set, 131
tmr2_period_get, 131
tmr2_period_set, 131
to_long, 98
to_word, 98

trunc_byte, 97, 98
trunc_word, 98
xor, 102

I
I/O

analog, 34
CCP, 34, 71
Current Gain, 38
Feedback, 42
general purpose, 30
H-bridge, 42
motor control, 44
relay control, 38

Input Sensing
Key Matrix, 46
optical, 43
Pulse Measurement, 71
quadrature encoding, 42
RPM, 73
Switches, 44
Timer1, 71, 73

Interrupts, 126, 129

K
Key Words, 29, 83

ALIAS, 83, 84, 91
ALLOCATE, 19, 83, 85, 109,

110
ANOTE, 83, 85
BEGIN, 12, 13
BREAK, 83, 85
CALL, 84, 86
DEFINE, 12, 27, 83, 86
ELSE, 27, 84
ELSEIF, 84
ENDFUNCTION, 12, 84
ENDIF, 26, 84
ENDOPERATION, 84
ENDRECORD, 83

Index FBASIC TICkit

165 Protean Logic

EQUIVALENT, 84
EXIT, 84, 86
FIELD, 19, 83, 87
FUNCTION, 12, 27, 84, 87, 91
GLOBAL, 12, 21, 83, 87
GOSUB, 84, 88
GOTO, 16, 84, 88
IF, 26, 84, 88
IFDEFINED, 83, 89
IFNOTDEFINED, 83
INCLUDE, 83, 89
INITIAL, 19, 83, 89
INTERNALS, 90
KEYWORD, 83, 90
LIBRARY, 12, 15, 27, 83, 90
LOCAL, 15, 21, 27, 83, 90, 98
LOOP, 12, 28, 84
MEMORY, 91
OPERATION, 84, 91
PARAMETER, 15, 27, 83
PROTOTYPE, 84, 92
RECORD, 19, 83, 92, 110
REPEAT, 12, 27, 84, 92, 109
RETURN, 84, 93
SEQUENCE, 21, 83, 85, 93
SIZE, 83, 93
SKIP, 84, 92
STOP, 14, 84, 92
TYPE, 83, 93
UNTIL, 14, 84, 101
VECTOR, 94
WATCH, 94
WHILE, 12, 14, 28, 84, 94

L
Launcher

TICKIT.EXE, 10
Lcd

Buss, 113
Commands, 63
Functions, 23, 62, 112, 116

Modules, 62
LED, 30

blinking, 30
Multiplexing, 59
polarity, 34

Libraries, 15, 28, 89, 90
Device Drivers, 25
Standard, 95

N
Network, 118

Multi-drop, 26, 149

P
Peripheral ICs, 50

44780, 62
DS1621, 53
LTC1298, 25, 70
MAX232, 75
MAX7219, 59
NEMA Instruments, 74
RSB509, 79
Xtender IC, 50

Pin Designations, 136
Power, 154

Connection, 153
savings, 116
Supply, 33

PWM
continuous, 34
efficiency, 35
simulated, 34
Xtender, 50

R
RAM, 21, 84, 87

Arrays, 22, 87
Stack, 22, 88, 90, 93, 140

FBASIC TICkit Index

Protean Logic 166

RS232, 118, 136, 148
RTCC, 28, 116

S
Serial Interfaces

3-wire, 59
EEprom I2C, 51
I2C, 50
I2C simulation, 53
RS232, 74
RS232 pin assignments, 76

SIZE, 83, 86, 93, 97
byte, 28
long, 28
none, 27
word, 27

T
Tech Support

BBS, 29
Web page, 29

W
Windows 3.1, 7

X
Xtender, 50

Index FBASIC TICkit

167 Protean Logic

FBASIC TICkit User Notes

Protean Logic 168

User Notes FBASIC TICkit

169 Protean Logic

FBASIC TICkit User Notes

Protean Logic 170

