FBASIC TICkit Table of Contents

1 Getting Started 3
1.1 The Goal Hereis"Instant Gratification”.............coviiriiiiiii s 3
1.2 Overview Of tNe PrOCESS.o 3
1.3 Step One: Connectthecables e 4
1.4 Step two: Compiling @aprogramt e 5
1.5 Stepthree: Getting the program insidethe TICKit ...t 6
1.6 Ifyouarehaving trouble. e 7
1.7 The TICkit development cycle: The standard routine.................coeiiiniant. 7
L8 VWAt NEXE? e et e e e 9
2 The TICKit Launcher 10
2.1 What isalauncher? How will it help when programing?......................... 10
2.2 How to configure the TICKit launcher for aprogram..................ccooivvnn... 10
3 FBASIC Anatomy 12
3.1 Dissecting the sample program, "first.bas"co i, 12
3.2 Aword about liBrariesoouee e 12
3.3 Amoreelegant "first.bas"..... ... 15
3.4 FBASIC line syntax (labels, remarks, conditionals).................c..ccoovvnn... 16
3.5 Constants, constants, and MOre CoNStaNtS.ovveeeneetn e 17
3.6 Using DEFINES and Constant Operators.ovvvveiieiieiineiinannnannn. 18
3.7 String constants and implicit allocation ... 19
3.8 Allocation Constantsand Field Names. ... 19
3.9 Variables, Global vsLocal and preciousRAM space.covveienenninnn.. 21
3.10 Variable Arraysand INdireCtionooiiuiiiiii e 22
3.11 Functions, parameters, and exit value....... ..ot 24
3.12 A devicedriver library for the LTC1298 (12bit A/D). ... c.vviiiiiiiiiiiiin. 25
3.13 Captain, | think the functionsare overload'n! oo, 28
314 Wat' S NEXE? ..ottt 29
3.15 Check out thethe Protean Web Site....... ..o 29
4 Simple Examples 30
4.1 A simpleprogramtoblink @an LED....... ..o 30

Protean Logic i

Table of Contents FBASIC TICkit

4.2 Construction techniques and POWEr SOUMCES vue ettt eiaeaenns 33
4.3 A simple PWM circuit for controlling alow voltage DC motor................... 34
4.4 Controlling relays for motor direction and electric braking....................... 38
4.5 Closed Loop Circuit Feedback in Control Circuits..............coiiiiiiiiiant. 42
4.6 Reading and Debouncing SWitChes. 44
4.7 Using Protean's 12C Xtender IC fOr more reSoUrCeSoovvveiinnenannennenns 50
4.8 Connecting with Other Resourcesvial2C............coviiiiiii it 53
4.9 Using a 3-wireinterfaceto control tonsof LEDSccocoiiiiiiiiiian.. 59
4.10 Using the Bus Routinesto Control an LCD module.................c.ooieat. 62
4.11 Fixed Point Arithmetic..........oooniii e 68
4.12 Usingthe CCP Inputto Measure aPulse.oooiiiiiii e 71
4.13 Using Timerltocalculate RPM. 73
4.14 Interfacing to RS232 AEVICES.ot e et 74
4.15 Using the RSB509 to Receive RS232 in Background....................cooeat. 79
4.16 EXample SUMMAYo 81
5 FBASIC Keywords 83
AL A S 84
ALLOCATE e 85
AN O T E 85
BREAK 85
O I 86
DEFINITION .. et 86
BEQUIV ALENT L. 86
L 86
I 87
FUNCTION e 87

GL OB A L .t e 87
GOSUB ..ttt e 88
€ 1 L 88

L e 88
IFDEFINED ... e 89

1 Protean Logic

FBASIC TICkit Table of Contents

IFNOTDEFINEDttt ettt eens 89
INCLUDE ...t 89
I 89
INTERN A LS . e 90
KEYWORD ..ttt ettt e et e 90

L B RA RY e 90
7 90
MEM ORY e 91
OPERATION ...ttt ettt et ettt ettt et et 91
PARAMETER ... e 91
PROTOTY PE ... e e 92
RECORD ..ttt et e 92
REPE A T e 92
RETURN L.t 93
SEQUENCEttt e 93

S ZE e 93

TY P o e 93
VECT OR ..t 94
AT CH e 94
WHILE . e 94

6 Standard Function Library 95
6.1 Standard Libraries: "....What do they contain, Books?"........................... 95
6.2 Standard Library SUMMary ..o e 96
6.3 Additional LibrarieS SUMmMaryoouiiuiiiii i 97
6.4 Assignment and Size Conversion FUNCLIONS. ... 97
T ASSIONMENE .ttt e 97
trunc_byte Truncatesalarger sizetoabyte ..., 97
trunc_word Truncatesalarger sizetoawordcoooviiiiiiiiinn... 98

to word Extendsasmallersizetoaword................ccoiiiiiiiiii., 98

to_long Extendsan (argument)tolongsize.............coooiviiiiiiiii... 98

6.5 Mathematical FUNCLIONSt e 98

Protean Logic i

Table of Contents FBASIC TICkit

+ ARTIMELIC SUM e 99
++ Increment DY ONe 99
- Arithmetic Differenceo 99
- Arithmetic Inverse (Change sign)c.veieii i 99
- Decrement by One 99
* Arithmetic Product 100
[ARthMELIC DIVISION ... e 100
% Arithmetic Modulus (Remainder)cooiiiiiiiiiiiiiinne 100
array_byte Calculate Addressof abytearray element..................... 100
array_word Calculate Address of aword array element.................... 101
array_long Calculate Address of along array element..................... 101
array_size Calculate Addressof an array element......................... 101
6.6 Bit ManipulationFUNCLioNSt e 101
b and 8and 16 bit Bitwise logical and function.......................... 102
b or 8or 16 bit Bitwiselogical OR function.............................. 102
b xor 8or 16 bit Bitwise logical exclusive or function.................... 102
b not 8 or 16 bit Bitwise logical complement function.................... 102
>> 8and 16 bit arithmetic shift argument to theright..................... 102
<< 8and 16 hit arithmetic shift argument totheleft...................... 102
b set Sethitsinan8or 16 bitfieldby mask..........................L. 102
b clear Clear bitsinan 8or 16 bit fieldby mask 103
b test Testshitsinan8or 16 bitfieldby mask........................... 103
6.7 Logical And Relational Test FUNCIONS.c.viiiiii i 103
== Multi-precision relational test forequalcoiiilt 104
>= Multi-precision rel. test for greater thanorequal 104
<= Multi-precision relational test for lessthanorequal 104
> Multi-precision relational test for greaterthan.......................... 105
< Multi-precision relational test for lessthan........................o... 105
<> Multi-precision relational test for notequal 105
and Perform logical AND conjunctionontwobytes....................... 105
or Perform logical OR conjunctionontwobytes......................... 106

IV

Protean Logic

FBASIC TICkit Table of Contents

not Performlogical NOT onabyte...............coiiiiiiiit. 106
6.8 Input and Output FUNCLIONS e 106
pin_high Makepinahighlogicoutputccoiiiiiiii.... 106
pin_low Makepinalow logicoutput..............oviiiiiiiiiiiiain..n. 107
pin_in Makepin aninput and returnlogiclevel 107
aport_get Get byte representing pin levels of addressport................. 107
dport_get Get byte representing pin levels of dataport.................... 107
aport_set Setpinlevelsof addressport ...t 107
dport_set Setpinlevelsof dataportcc.oiiiiiiiiiiii 107
atris get Get status of address pin tristatelevels.......................... 107
ditris_get Get status of datapintristatelevelsooooiiiiiat. 107
atris set Set tristate levelsfor addresspins ..ot 107
dtris_set Set tristate levelsfor datapins ...t 108
pulse_in_low Measuredurationof alow pulse...................counet. 108
pulse_in_high Measureduration of ahighpulse.......................... 108
pulse out low Generatealow pulseonapin............cooovveiiiiinn... 108
pulse out_high Genereateahigh pulseonapin 108
cycles Generate square wave cyclesonapin..........c.oocovviviiiiianien.. 108
rc_measure Measure the resistance/capacitanceat apin................... 109
6.9 Eeprom Routines(Pointer Dereferencing)ovuvieiiiiiiiiiiiiiieinann.. 109
ee read Readabyteat EEpromaddresscooviiiiiiiiniiann. 110
ee read word Readawordat EEpromaddress.................cooeiint. 110
ee read long Read alongat EEpromaddresscooovivviiinens. 110
ee write Writeabyteto EEpromaddress. ..., 110
6.10 1ICPeripheral FUNCLIONS o 111
i2c_write Write acommand and databytetobus....................... ... 112
i2c_ read Read abytefromanaddresseddevice...............coveiinn... 112
6.11 Parallel Bus And LCd FUNCLIONSo.oee e 113
buss setup Setup address and datapinsfor busl/O....................... 114
buss read Read abytefrombusaddress..................oo, 114
buss write Writebytetobusaddress...................ciiiiiie 114

Protean Logic %

Table of Contents FBASIC TICkit

lcd_init4 Initializesan LCD module for 4 bitdatabus.................... 114
lcd_init8 Initializesan LCD module for 8 bitdatabus.................... 114
lcd_cont_wr Writesabyteto LCD control register........................ 115
lcd_data wr Writesabyteto LCD dataregister...............cooeivvnn... 115
lcd_string WritesastringtotheLCD ... 115
lcd out WritesanumbertotheLCD...........ooiiiiiiiiiii i 115
lcd_fmt Writesaformatted longtothe LCD................ccoevvevnnnn.. 115
6.12 Timing and Counting FUNCLIONSiuii e 116
delay Delay processing for milliseconds.coviiiiiiiiiint. 116
sleep Delay processing and conserve power for atime..................... 117
rtcc_get Get the current count of the RTCC register 117
rtcc_set Set the count of the RTCCregister..........oooviiiiiiininn... 117
rtcc_int RTCC sourceisinternal clockccociiiiiiiiiiit, 117
rtcc_int_16 RTCC sourceinternal and prescaledby 16.................... 117
rtcc_int_256 RTCC sourceinternal and prescaled by 256................. 117
rtcc_ext rise RTCC sourceisexternal clock.......................oal. 117
rtcc_ext fal RTCC sourceisexternal clockcooit. 118
rtcc_count Count while delaying for milliseconds 118
rtcc_wait Wait until RTCC count rollsovertozero....................... 118
6.13 RS232and Communications FUNCLIONSovviiiii i 118
rs param_set Set RS232 parameters.oouiriiiiiiiiiiiiiiiiiaanns 119
rs break Send RS232 break condition.....................cocoiiiiit, 120
rs param_get Get RS232 parameters.........o.ooviriiiiiiiiiiiiiiiaann 120
rs_ send Send byte out RS232 pin (TICKit57)coviiiiiiiiiiiii. 120
rs_ send Send byte out RS232 pin (TICKit62)covvviiiiiiiinn... 120
rs_receive Receive bytein RS232 pin (TICKit57). ..., 120
rs_receive Receive bytein RS232 pin (TICKit62)................coooute.. 121
rs recblock Receivearray of bytesin RS232pin.................coooune. 121
rs_string Send astring of bytesout RS232 pin................cooovinn... 121
rs delay Delay oneand one half RS232 bittimes......................... 122
rs_stop_chek Set RS232 stop bit protocol on....................c.ce. 122

Vi

Protean Logic

FBASIC TICkit Table of Contents

rs_stop_ignore Set RS232 stop bit protocol off ..., 122
rs fmt Sendsaformatted long out RS232pin............coooviiiiinn... 122
6.14 ConSOIe FUNCHIONSo e e e 123
con test Test for theexistanceof aconsole...................ocoveiinnt. 123
con_in_char Get acharacter from console (TICKit57) 124
con_in_char Get acharacter from console (TICKit62) 124
con_in_byte Get abyte from the console (TICKkit57) 124
con_in_byte Get abyte from the console (TICKit62) 124
con_in_word Get aword from the console (TICKit57) 124
con_in_word Get aword from the console (TICKit62) 124
con_in_long Get along from the console (TICKit57)...................... 124
con_in_long Get along from the console (TICKit62)...................... 125
con_out_char Send abyte character totheconsole........................ 125
con_out Sendsanumericvaluetotheconsole............................ 125
con_string Send a string of bytes out console pin......................... 125
con_fmt Sendsaformatted longtotheconsole........................... 125
6.15 System, Interruptand Miscellaneous Functions.ocoviiian... 126
debug on Turn debug protocol ONn ... 127
debug_off Turn debug protocol off ...l 127
irg_on Turninterrupt SENSING ON ... et 127
irg_off Turninterrupt sensing off 127
reset Resetsthetoken interpreter ..., 127
int_cont_set Sets control byte for global_int (TICKit62)................... 127
int_cont_get Gets control byte for global_int (TICKit62).................. 128
int_flag set Sets Peripheral Flag byte (TICKit62) 128
int_flag get Gets Peripheral Flag byte (TICKit62) 128
int_mask_set Sets Peripheral Mask byte (TICKit62)....................... 128
int_mask_get Gets Peripheral Mask byte (TICkit62)...................... 128
6.16 Peripheral Control FUNCLIONSt 129
tmrl _cont set Sets TMR1 control register (TICKit62) 130
tmrl_cont get Gets TMR1 control register (TICKit62).................... 130

Protean Logic Vil

Table of Contents

FBASIC TICKit

tmrl _count set Sets TMR1 count (TICKit62).............covviiiinin... 130

tmrl _count get Gets TMRI1 count (TICKit62)coovvieniin... 130
tmr2_cont set Sets TMR2 control register (TICkit62) 130
tmr2_cont get Gets TMR2 control register (TICKit62).................... 130
tmr2_count set Sets TMR2 count (TICKit62).............ccoviiiiiniin... 131
tmr2_count get Gets TMR2 count (TICKit62)cooviiiniin... 131
tmr2_period set Gets TMR2 period register (TICKit62)................... 131
tmr2_period get Gets TMR2 period register (TICKit62) 131

ccpl _cont st Sets CCP1 control register (TICKit62) 131

ccpl _cont get Gets CCP1 control register (TICKit62)..................... 131

ccpl _reg set Sets CCPLregister (TICKit62).....o.veeniiiiii e 131

ccpl _reg get Gets CCPL register (TICKit62)oovvviiiiiiiiiiient. 131
ssp_cont set Sets SSP control register (TICKit62)cooout.. 132
ssp_cont get Gets SSP control register (TICKit62)........................ 132
ssp_buffer set Sets SSP Buffer (TICKit62).........ccovvviiiiiiiiiian... 132
ssp_buffer get Gets SSP Buffer (TICKit62)covviiiiiiiiniin... 132
ssp_addr set Sets SSP Address (TICKit62)covvviviiiiinnan... 132
ssp_addr get Gets SSP Address (TICKit62)...........covvviviiiinnan... 132
ssp_status get Gets SSP Status (TICKit62)cccovviieienin... 132

6.17 Constant Symbols Defined in Libraries. ..., 136
7 The Console Program 139
7.1 Turning your computer intoadumb terminal.....................ooiaL 139
7.2 The Console Protocols (home brew TICKit [/O) ..., 139
8 The Debug Program 140
8.1 What exactly doesthedebugger do?o 140
8.2 The Debugger's SCreen FOrMat.ooiui it 140
8.3 Debug Commands (doing what youwant to do).............c.coviiiiiannan... 141
9 The Compiler Program 145
9.1 How toinvokethecompiler....... ... oo e 145
9.2 The FBASIC command line.o 145
9.3 What do the error messagesreally mean?..................ccoiiiiiiiiiiiinin... 145

Viil

Protean Logic

FBASIC TICkit Table of Contents

9.4 Command line Symbol Definition...... ... 146
9.5 The Symbol file: A neat debugging trick, 146
9.6 Compiler Method of Setting Break and Watch Points........................... 146
Appendix A: Circuits 148
A.1 Download Cable(S) cuieiii e e 148
A.2 Multi-drop connection of multiple TICKitS. ... 149
A.3 The RC measurement CirCUIt.ouuuieiriei et eii et aeanas 151
Appendix B: TICKit57 Hardware 153
B.1 FBASIC TICKit57 schematicdiagramoiuiiiiiiiiiiii i iiaaenn 153
B.2 TICKIt57 SPeCifiCalionsouiuii it 154
B.3 Component Placement Diagramo.iiuiiniiiii i aenns 154
Appendix C: TICKit 62 Hardware 155
C.1 TICKkit 62 Schematic (40 piNn MOAUIE).ooieii e 155
C.2 TICKkit 62 Project Board SchematiCovuiiiiii e 156
C.3 TheTICkit 62 Moduleand IC pindiagramscoviiiiiiiiiiiiiinann.. 157
C.4 Making your own layout usingthe 28 pinIC.............oooiiiiiiiiiiiinan... 157

Protean Logic IX

Notices FBASIC TICKit
Legal and License Information

Single User License Agreement

The FBASIC™ Language, Compiler, and associated Tools are protected under United States
copyright law. Protean Logic grants the single user license holder the right to use this software on one
or many computers, provided that not more that one person is using this software AT THE SAME
TIME. Separate licensing agreements with Protean Logic will supersede this single user license
agreement. Contact Protean Logic for information regarding possible site licensing or educational
licensing.

Limited Warranty

Protean L ogic warrants the disks and materials contained in the development kit free from defectsin
materials or workmanship for a period of 30 days from the date of purchase. If, in thistime the disks
are found to be defective, they may be returned to Protean Logic for replacement. Protean will refund
the purchase price of complete and undamaged development kits at the customers demand if such
demand is made within 30 days from the date of purchase.

Protean L ogic makes no representations or warranties as to the merchantability or fitness of this
product to a particular purpose. Products devel oped with the development kit should not be used in a
life support application without express written agreement with Protean. Protean makes no other
warranty, either expressed or implied.

Technical Support

Protean L ogic maintains an internet web site for all customers. Software updates are available from
the Protean to all customers. Simply e-mail "support@protean-logic.com” and provide the invoice
number and date of purchase in your message. We will e-mail you areply with an attachment of the
latest software. The URL for the Protean Logic web siteis, "http: //www.protean-logic.com™.

Protean Logic can be reached directly at (303) 828 9156. Protean Logic also responds to FAX
messages daily. The FAX number is (303) 828-9316.

Properties
© 1995 by Protean Logic. All rights reserved.

FBASIC and Protean Logic are trademarks owned by Protean Logic. All other trademarks contained
in this manual are the property of their respective holders.

1 Protean Logic

Notices FBASIC TICkit

Versions and Accuracy

This manual documents features for TICkit interpreters TICKit62 version C. All information
contained in this manual is believed to be accurate. However, Protean Logic disclaims any
responsibility for incorrect information contained in this manual.

Some features documented in this manual may not be completely implemented in current releases of
software or hardware. These features are scheduled to be released in the near future and are
documented now to reduce manual printing costs as these features are implemented. Where thisis the
case, notations indicating the versions containing the new features are contained in the "readme.txt"
file supplied with the release disk. Review the readme.txt file prior to program design to ensure that
necessary features are implemented in the current release.

Protean Logic 2

Getting Started FBASIC TICKit
1 Getting Started

1.1 The Goal Hereis" I nstant Gratification"

In this chapter you will learn how to connect the TICKkit hardware to a console computer, use the
FBASIC compiler program to compile a sample program, use the TICkit download program to copy
the compiled program into the TICkit's EEprom, and execute the program on the TICkit. To do this
you will need a TICKkit circuit board, an IBM compatible computer with at least 500K of available
memory, one free serial port, and a special serial cable for downloading from the IBM computer to
the TICKit. A diagram of this cable is shown in Appendix A of this manual if you need to make
another for some reason.

Throughout this manual, the IBM computer is referred to as the "Console". Downloading refers to the
process of copying a program from the Console to the TICkit EEprom.

Debugging refers to the process of watching the TICkit execute a program. Debugging is
accomplished by running the debugging program on the console, which is connected to the TICkit via
atwo wire cable, and performing special debug commands that the TICkit understands.

1.2 Overview of the process

1. Connect The download cable between a serial port on your computer and the two pin
download socket on the TICkit Module or similar connector on your custom circuit.

2. Connect power to the TICkit. If you purchased a project board, simply plug in the wall
adapter init's socket. If you are using the module in your own prototype, apply aregulated 5
Vdc to the appropriate pins on the TICkit. +5 Vdc (vdd) connects to pin 30 of the module
and Gnd (vss) connectsto pin 29 or pin 10. If you are using the 28 pin processor IC in your
own design pin 20 is +5 (vdd) and pin 8 and 19 are the ground pins.

3. Install the TICkit software by placing the supplied disk in a drive and typing: aiinstall or
b:install (depending on which floppy drive the disk isin).

4. Run the TICkit debugger on the console computer by changing to the directory where the
software isinstalled and typing: debug 1 or debug 2 or debug 3 or debug 4 (depending on
which serial port you plugged the download cable into).

5. Reset the TICkit by pressing the button on the T62-PROJ board or by removing and
re-applying power to the TICkit module. If everything is working, Some additional
information will be displayed in the dialog box on the console computer that looks
something like:

TOKEN: EO PC: 01FA Command:

6. Quit the debug program by pressing 'Q'.

. Compile the example program by typing: fbasic first62

8. Download the program using the debugger. Type: debug 1 first62 (the port number may not
be one, use the same number as you used in step 4). Reset the TICkit and then press ‘D" at
the command prompt on the console computer. Answer "Y' when asked if you wish to
download.

3 Protean Logic

~

FBASIC TICKit Getting Started 1

9. Execute the downloaded program by pressing 'E' at the command prompt on the console
computer.

1.3 Step One: Connect the cables

GEE D1 3
RS
. 40pin DIP

Tlsgil?%éoorr\\ Prototype | | >5.6vdc

DC_Adopter adapter

% TICKit74 Area ~
b

|

e = <) ovdc
= connector
) or

—
i
O
ol

VA

Ui
XTNZBE

Download 2-pin
Fz P F~— Socket (Gnd on
bottom)

Reset Button —> H Q ErIcz]

Ground

The TICkit 62 is the current version of the TICKit. It is a small PCB module approximately the same
size as a40 pin DIP package. Only 32 of these pins are actually used by the TICkit 62, the rest are
reserved for possible use in the future TICKit products. The TICKkit 62 can be plugged into a 40 pin
DIP socket, a solderless breadboard, or into Protean’'s T62-PROJ project board. The idea here isto
allow projects to be built on inexpensive carrier boards and then to move the processor modules from
project to project. The download socket for the TICkit62 module is a vertical 2-pin socket located at
the bottom of the module next to the socketed EEprom. The ground pin is the lower pin but no
damage is done by reversing the polarity. The power connection is made through the DIP pins of the
modul e consult the pin-out diagram for connection information. The download connection is also
available through the DIP pins. If a T62-PROJ carrier board is used, simply plug the module into the
40pin DIP socket and apply power at the adapter jack on the left side of the board or solder the
supplied 9volt battery plug in the holes provided and connect a battery.

Connect the Download cable to afree serial port on the Console. The download cable connector has a
9 pin D connector for the console serial port. If your computer has only a 25 pin connector, a9 to 25
pin adapter will work fine. Also a 25 pin female connector (like Radio Shack # 276-1548) may be
wired up according to the download circuit shown in appendix ‘A’ of this manual. Plug the two pin
connector of the download cable into the two pin socket labeled, "DL" on the TICkit. The "DL" socket
is not polarized in any way, so thereis a possibility the download cable will be inserted incorrectly
into the TICkit. The ground pin (the wire with the markings) should be to the left or bottom. If the
cable isinserted incorrectly, no damage will occur, simply unplug and then re-plug the Download
cable with the correct polarity so the download software will connect with the TICKkit.

Every time the TICKit is reset, it tests for a reasonable response to a small message that is sent out the
DL port. If there is a correct response to the message, the TICKkit assumes it is connected to a Console

Protean Logic 4

1 Getting Started FBASIC TICKit

and enters the debugging mode. If there not a correct response, or there is not a correct idle state
voltage on the DL port, the TICkit will simply start executing the program that is contained in its
EEprom.

Once the power and download cables are properly connected, the console needs to establish
communication with the TICkit. On the console computer, go to the directory where the software is
located. This may be located on a floppy disk if you did not copy the files from the distribution disk
onto your hard disk drive. You can install the files to your hard disk by running the install.exe
program on the release disk (type aiinstall at the DOS prompt). Once the software is installed, change
the directory to where your TICkit software was placed. At the DOS prompt, type:

DEBUX2 <serial _port_numnber > (con? exanpl e: DEBUXG2 2)

Or, if you are using a TICkit57 use the command line that follows.
DEBUG7 <seri al _port _numnber > (con? exanpl e: DEBUG7 2)

All aspects of DEBUG are the same between the two programs. However, internal communication
offsets differ for each device and the proper program must be used for correct memory information to
be displayed.

The "serial_port_number"should be the number of the COM port that the download cable was
plugged into. The screen of the Console will contain alarge, divided box in the lower half. The left
side of thisbox is called the "debug dialog" area and will display information about the debug session.
When the TICkit and the Console connect, a message indicating connection will display along with
certain information like the current token, PC, MP, and SP. Do not worry about the exact meaning of
these registers at this point. Usually the TICKkit will require resetting to cause it to connect to the
Console. Reset the TICKit by either pushing the reset button in the middle left of the TICkit or by
removing then re-applying power to the TI1Ckit.

At this point, the debugging program on the Console should display a message indicating it has
connected with the TICKkit. If thisis not so, verify that the cable isinstalled correctly. Check that the
two pin connector is correctly plugged into the TICkit. If this connector is reversed, the TICkit will
not connect. Verify that the debug program was started on the correct serial port. If, after checking all
these possibilities, the TICKit still will not connect, contact Protean via voice at (303) 828-9156, FAX
(303) 828-9316, or e-mail: support@protean-logic.com.

1.4 Step two: Compiling a program
At this point, the TICkit and the Console are successfully connected. Quit the debugger program by
pressing 'Q' or <cntrl-Z>. We will come back to using the debugger later.

Some sample programs were included with the compiler. One of these programs, called first.basis
what we will use to demonstrate how to compile, download, and run a program. The compiler will
need the program to be contained in an ASCI| text file in the current DOS directory. The compilés
invoked simply by typing FBASIC and then the name of the source file to be compiled. In our
example, the program isin an ASCI|I text file called "first.bas’, so type:

) Protean Logic

FBASIC TICKit 1 Getting Started

fbasic first62

The compiler reports afew lines of progress while the program is compiled and then returns to the
DOS prompt. If the program compiled successfully, two files will have been made by the compiler.
These files are "first.tkn" which is the file to download to the TICkit, and "first.sym" which is afile
for debugging purposes that tells the debugger where lines of code are and where global variables are.

When you write your own programs, simply prepare a source file using any editor. The DOS edit
command will work just fine. Then follow the procedure above to compile your program. It is normal
to have errors reported while compiling. If your program causes errors during compilation, re-edit
and compile your program until no errors are produced. Warning lines during compilation are not
technically errors, rather they inform the programmer of a possibility of incorrect program operation.
The user may choose to ignore the warnings, or re-write the program to eliminate the lines that
generated the warnings.

At this point, the tokens generated by the sample program are ready to be downloaded. Start the
debugging program as you did in step one above, but this time add the name of the sample program.

Type:
debug62 <serial _port> <nanme_of file>

In this case, for example, assume the TICkit is connected to serial port COM2 and type:
debug62 2 first62

Once again, the debugger should report that the TICkit is connected (If not press the TICkit reset
button). This time, the name of the program "first" should display at the bottom of the dialog box and
theword "SYMBL" indicates that there is symbolic information available for thisfile.

1.5 Step three: Getting the program inside the TICkit

At this point, the Console computer is running the debugger and talking to the TICkit, but the TICkit
has not been programmed. This "programming" process is referred to as downloading. The debugger
is used to download the token file generated by the compiler to the TICkit. The TICkit will write the
tokensinto it's EEprom for permanent storage (or until a different program is downloaded). The
debugger isinstructed to start downloadindpy pressing the letter ‘D' at the debugger's command
prompt. The debugger will then ask if you really want to download to the TICkit. Press'Y' to initiate
the transfer. The debugger will read the token file, transfer the tokens to the TICkit, then verify the
transfer. One thing which we have assumed is that the debugger knows which token file to use. It
will, provided the debugger was started with a file name on the command line. If that is not the case,
use the "file" command of the debugger to specify which file to use by pressing 'F' at the debugger's
command prompt.

If all went well with the download, there will be a message indicating the file was downloaded and
verified. The PC (program counter) register will be pointing to the first token of the downloaded
program, and a command prompt will display. Now press the letter 'E' which is the debugger
command for execute. The program will run and "Hello world..." will display above the debug dialog

Protean Logic 6

1 Getting Started FBASIC TICKit

box. Congratulations! The TICkit program placed that message there. Y our first program has been
compiled, debugged, downloaded, and executed. Y ou can reset the TICkit and press 'T' or 'S’ to watch
the TICKkit execute the program a source line or token at atime.

1.6 If you are having trouble

If your TICKkit does not seem to be responding, or the console computer is not executing as this
manual says it should, follow the steps below to attempt to remedy the problem. If none of these
things work, contact Protean Logic at: (303) 828 9156.

1. Verify that the power and download connections are not reversed. The plugs are not
polarized, so try plugging the cables in every orientation. Press the reset switch (or remove
and repaly power) after every change.

2. Run the programs from DOS. If you are in windowsxit to DOS. Verify that no mouse
drivers or other items are using the required serial port. Disable any TSRs which might
interfere with transfer timing.

3. Run all programs from the same directory where the software was installed (\tickit). Make
sure that the DOS debug program is not being run instead of the TICkit's because of a path
search.

7 Protean Logic

FBASIC TICKit 1 Getting Started

1.7 The TICkit developmentcycle: The standard routine

Editor
Initial Design Revise the program
Compiler Errors
Assemble Electronics Compile the Prog.
Editor Debugger
Write the program Download the Prog
Debugger
froject Fi nishgm Run & Test
Electronics Errors Program Errors
Revise Electronics Check Prog. Logic —

The "first"” example is avery simplified version of the steps required to get a pre-written program
compiled and installed into a TICkit device. The routine for initially writing, compiling and
debugging a program is not any more difficult. The diagram above graphically illustrates the steps
involved for developing a program and what software tools are used for each step.

The very first step is setting up the development configuration. The supplied development integration
tool is called the TICkit launcher. Setting up a development configuration is an optional step, but a
very fruitful step if the project is large or difficult in any way. The chapter on the TICkit launcher
explains the specifics required to build a configuration. In general, the common commands required
to perform each step of development are entered into a special configuration file. Thisfile actsasa
type of menu to easily select each step of the development cycle with just a few keystrokes and frees
the user from having to remember specific command line parameters.

The next step isto typein anew program or to copy an existing program which will be modified for
anew application and make initial modifications. The tool used to do this, atext editpiis not
supplied with the TICkit package, but every version of DOS has a text editor. There are also special
editors available just for program development. For the sake of discussion, this manual assumes you
will be using an MS-DOS version 5.x and 6.x program called "edit" to enter and modify programs.
Refer to your MS-DOS documentation for instructions for the text editor, or use whatever editor you

Protean Logic 8

1 Getting Started FBASIC TICKit

are most familiar with. Most professional programmers prefer to continue to use whichever editor
they have been using in the past. This saves learning a new tool. Some people even use word
processors to make their programs and simply store the files as ASCI| text files which are readable by
the compiler.

After an ASCII text fileis prepared using an editor or word processor, the next step isto compile the
program. The supplied program called "fbasic.exe" reads the ASCII text file and generates two
additional files as output. One file is the machine representation of the program called a token file,
and the other file is a collection of information used by the debugger called a symbol file. The
compilation step usually produces AN ERRORIST. Asannoying as alist of errorsis, it really isa
great time saver. The compiler can detect many types of errors as it is generating the token file.
Because the entire file is scanned, most errors in a program can be detected even before the program
ever runs. The fact that errors are common is the reason for the smaller loop in the development
diagram. After the compiler reports errors, the programmer runs the editor again to correct the
reported problems, then re-runs the compiler. This small sequence is repeated until the compiler
reports no errors.

The next phase of the development cycle is the debug cycle. The tool used here is the supplied
"debug.exe" program (actually DEBUG62.exe or DEBUG74.exe). This program is run and the token
and symbol file for the program are loaded into the debug program. Then the tokens are downloaded
into the TICkit hardware using the download command of the debugger. At this point any of many
types of debugging techniques are used to verify that the program actually does do what it is intended
to do. The program can be executed and run at full speed, or the programmer can interactively step
through each line of the program and watch the results aline of the program at a time. Watching the
program execute aline at atimeis called "source level debugging” and is a very effective way for
finding bugs in programs. The debugging phase of the development cycle is used to find "run-time"
or "logical" errorsin a program where as the compiler can only catch "syntactical" or "grammatical"
errors. Usually there will be at least afew errors of logic in a program. This fact generates the larger
loop in the development diagram. When an error in logic is detected while debugging the program,
the programmer must go back to the editing stage of the development cycle to edit the program source
code, re-compile the program, re-download the program, and test again until no errors of logic
remain. At this point the program is complete. This scenario assumes that any circuitry created for
the task works properly also. Often changes in the user's hardware interface will require changesin
the program which requires re-editing, re-compiling, downloading, and debugging once again.

1.8 What next?

The following chapter talks about the TICKit launcher. This program is the integrated interface for
programming the TICkit. Using the launcher saves lots of typing while developing a program. It
allows the various command lines, like the ones we just used to compile and download the sample
program, to be entered into a special configuration file. Then the compiling, downloading, editing,
etc. for a program can be started with just a few keystrokes instead of typing a whole command line
each time.

9 Protean Logic

FBASIC TICKit 1 Getting Started

After the Launcher is explained, the next chapter will take a closer look at the sample program. This
time the emphasis is on programming, not just using the tools to get the program into the TICkit. In
this chapter, the fundamentals of the FBASIC language are discussed. After this chapter, many
programmers will be ready to get to their project. The remainder of the manual can be used as a
reference.

The next three chapters deal with the programming language in more detail. Chapter 4 talks about
expressions, types, and other issues that more complex FBASIC programs can use to produce better
programs. Some philosophy of why FBASIC isthe way it is appears here. Chapter 5 talks about the
Keywords used in FBASIC. Listing keywords in alphabetical order enables this chapter to be used as
areference. Chapter 6 contains alist of functions. This chapter is organized by what the functions do.
Most programmers will want to spend some time reviewing this list to see what is available and what
sort of arguments the functions need.

Thefinal chapterstalk about the Debugger, the Compiler and the Console program. The Console
program may be used instead of the debugger once a program is operational. The Console program
uses the full screen to display information from a TICKit. In this case, the console computer becomes
an input/output device for the TICkit. Review these chapters to find more advanced techniques to
employ with these tools. The Debugger instructions will be especially useful.

Be sure and become aguainted with the Protean Web Site at: //www.csn.net/Protean. This site
contains many applications notes, product update information and links to other useful data sources.
Also, spend some time to explore the sample programs on the release disk. Information about the
TICkit changes quickly and often there are new libraries and other resources which have yet to be
documented which are contained on the release disk.

Protean Logic 10

2 The TICkit Launcher FBASIC TICkit
2 The TICkit Launcher

2.1 What isalauncher? How will it help when programing?

A launcher is simply atype of menu program. Because the use of the editor, compiler, and
downloader is cyclical in nature, a convenient way to repeatedly execute each of these tools on the
required filesis areal time saver. The launcher does just this.

Entering the command line for each source file to be edited in a program, the compile command, and
the debug command into the launcher allows the programmer to repeat any of these commands with a
few key strokes.

The TICkit launcher will hold up to ten command lines. The list of command linesis displayed in the
center of the screen plus three other options used to load different configurations, edit the current
configuration, make a new configuration based on the current one, and exit the launch program.

The launcher is started by typing:
tickit [<configuration_file>]

The configuration_fileis optional. Each list of filesis referred to as alaunch configuration.
Commonly, there is a separate configuration for each program under development. These
configurations can be named to correspond with the name of the primary source file. For example,
with the program "first.bas", a configuration named "first.tic" could contain the following three
command lines:

O edit first. bas
1 fbasic first
2 debug62 2 first

These three commands would be repeated frequently if the program "first" were complex and required
alot of debugging and compiling during its development. The edit of libraries and other source files
could also be added to thislist. The process of starting the launcher for this configuration would be to

type:
tickit first

Each one of the commands on the list is given a number. Pressing the number while the launch menu
is displayed will cause that command to be executed. The commands can also be selected by using the
arrow keysto highlight the desired command and pressing the <enter> key.

Some programs, like the FBASIC compiler, produce relevant information immediately before they
terminate. (The error list). For this reason, the launcher can be made to wait for a key press after each
command on the list. This allows the programmer to examine the data on the screen before the launch
menu is re-displayed.

11 Protean Logic

FBASIC TICkit 2 The TICkit Launcher

2.2 How to configure the T1Ckit launcher for a program.

Essentially, every program requires a separate launcher configuration. A new configuration is created
by starting the launcher with an existing configuration, or the default configuration if no other
configurations exist in the working directory, and modifying it to fit the new program. The new
configuration is given a new name and is saved during the edit process.

To modify a configuration, simply select the Configure Launcher (C) option on the launch menu. A
box with the list of command lines will display in the upper left of the launch screen. Use the arrow
keys to move to the lines to change and modify each line as required. Change the configuration name
to be the name of the new configuration. Press the <esc> button to end the configuration edit session.
If afile exists with the same name as the configuration name given, the launcher will ask if it is OK
to overwriteit. Y ou may press 'Y' to overwrite the old file, 'N' to re-edit configuration information, or
'C' to cancel the edit session and return to the main launch menu without saving any changes made to
the configuration.

Often a configuration will be identical to ones already created. In this case call up the existing
configuration using the (L) option then use the "New Configuration” (N) option to change only the
name of the program in the configuration.

The user may also select a different configuration while remaining in the launcher by selecting the
Load Configuration (L) option on the launch menu. The launcher will ask for a name of the
configuration to load. If the file name given exists, the configuration will be loaded. Only the root
name need be given. The ".tic" suffix will be added to the configuration name automatically. If the
specified configuration file does not exist, a pick list of existing configurations will be displayed to
choose from. Arrow up or down to select the configuration name you wish to load. Press enter to load
the highlighted configuration. The user may wish to press the <tab> key to clear the configuration
name when loading a configuration. This has the effect of calling up the pick list immediately. If the
user presses the <esc> key while the load name is being entered, the old configuration is continued
and the user is returned to the launch menu.

To exit the launcher, select the eXit launcher (X) command.

Protean Logic 12

3 FBASIC Anatomy FBASIC TICKkit
3 FBASIC Anatomy

3.1 Dissecting the sample program, " first.bas’

DEF tic62 c
LIB fbasic.lib

G CBAL word eeprom pntr
G CBAL byte each_byte

FUNCTI ON none nai n
BEG N
rs_param_set(debug_pin)
=(eeprompntr, "Hello Wrld...")
=(each_byte, ee_read(eeprompntr))
VWH LE <>(each_byte, Ob)
con_out _char (each_byte)
++(eeprompntr)
=(each_byte, ee read (eeprompntr))
LocP

REP
LOCP
ENDFUN

The sample program "first.bas", which isincluded in the Development Kit, is shown above. This
program places the string "Hello World..." on to the console screen. This program is typical of a
program written in FBASIC. LIBRARIES are usually referenced at the beginning of a program, the
GLOBAL variables are declared and DEFINITIONS are listed. Finally the program ends with the
FUNCTION blocks that make up the procedural part of the program.

This example only has one FUNCTION, but usually there will be many functions in a program. The
order of FUNCTIONSs isimportant in FBASIC. FUNCTION names, like all symbols, must be defined
or declared before they are referenced. This means that a FUNCTION block for afunction name must
be placed before any code which calls that function.

The beginning execution point for all FBASIC programsis the FUNCTION main. The FUNCTION
main will ailmost always be the last function block in a program because it will reference all the other
functions in a program, if any others exist. The FUNCTION main must have no parameters and no
return value. Another interesting point illustrated in the example, is that there is really nothing for
the TICKkit to do when "main" finishes. So, it isagood ideato simply place the TICKit in an infinite
loop instead of allowing the TICKkit to execute random code when main finishes.

13 Protean Logic

FBASIC TICKit 3 FBASIC Anatomy

3.2 A word about libraries

Thefirst two lines of the example are a DEFINE directive and a reference to the library, "fbasic.lib".
These two lines work together to inform the compiler about the device that the program will
eventually operate within. The define line informs the fbasic.lib which version of TICkit hardware it
is dealing with. The fbasic.lib file contains special instructions that inform the compiler about
keywords, available variable sizes, and what built-in hardware functions are available in the TICkit.
Virtually every FBASIC program will reference this library. This library, and its component library
"token.lib" are good sources of information about the standard library in the TICkit. By editing the
file "token.lib", the calling definitions for internal routines can be examined along with any notes or
special definitions for the routines. Thisinformation is as accurate as possible because thisis what the
compiler actually uses to make the program. A little later in this chapter, our example will be
modified to use another library that comes with the development kit that makes the program even
simpler.

The next few lines are GLOBAL lines. These statements define symbolic names and sizes to variable
storage areas. In our example, a 16 bit word is associated with the symbolic hame "eeprom_pntr" and
an 8 bit word is associated with the symbolic name "each_byte". The programmer never needs to
know the physical location of these variables since the compiler will always know where they are on
the basis of their symbolic names.

The next lines create a procedure block for the symbol "main”. As mentioned before, the FUNCTION
main is the starting execution point for any FBASIC program. Every FUNCTION in FBASIC must be
given aname and atype for any value that it returns. "Main" will never return a value (it has no place
to go), so it is defined as type "none". The FUNCTION "main" never has any parameters either, but if
it did have parameters or local values, they would be defined for the duration of the FUNCTION
block and would appear between the FUNCTION and BEGIN statements.

BEGIN is the statement which marks the beginning of code generation. All the statements between a
BEGIN and an ENDFUN are code generating statements. In our example, two assignments, two
loops, some math, some EEprom functions, and a console output function are referenced.

FBASIC has expressionevaluation, but it has no "operators". This means that all arithmetic is
performed using function calls. Even assignment, (=) is accomplished using functions. This
"limitation” makes the language very simple, but possibly a bit unfamiliar. To reference afunction
simply use the function's name followed by a left parenthesis "(". Thistells the compiler that the
program is to execute the code contained in the procedure block or operation which has that name. If
any parameters are to be used, they would be placed after the left parenthesis, but before the matching
right parenthesis")". Parametersin function calls can be variable references, parameter references,
constants, or other functions with return values.

In our example, the first assignment line will assign a value to the variable "eeprom_pntr". The value
it assignsis a 16 bit pointer to the string "Hello World...". The string "Hello World" appears to the
compiler as a constant. This may seem mystical but it really is quite simple. When the compiler sees a
quote (") it understands that a string constant is being defined. All characters that appear in the string

Protean Logic 14

3 FBASIC Anatomy FBASIC TICKit

will be placed at the end of the program code and a pointer to beginning of that EEprom location will
be used as the value of the constant. Our example places the EEprom address of the place where
"Hello World..." is stored into the variable "eeprom_pntr".

The next line reads a byte from the EEprom at the location given by the variable "eeprom_pntr" and
places that byte into the variable "each byte". The function "ee_read", which is contained in the
standard library, is what actually does this operation. The byte that is returned from that function is
placed in "each_byte". Assignment operators in the standard library copy the contents of the second
variable (ee_read) into the memory area of the first variable (each_byte).

The next lineis a WHILE statement. This statement marks the beginning of a structured loop in
FBASIC. An expression follows that tests for alooping condition. The body of the loop will be
executed only while the expression evaluates to a non-zero (true) value. The first LOOP statement
ends this WHILE block. The expression for this WHILE statement tests the variable "each_byte"
against the byte constant 0. If they are not equal, the "<>" function returns a value of 255 (all 8 bits
are one). If "each_byte" is equal to 0, the "<>" function returns a 0 indicating that the comparison
failed. All relational functions in the standard library return either a 0 or 255.

The body of the loop contains three function calls. The first call is to afunction which outputs one
byte to the Console. This function will cause the contents of the variable "each_byte" to appear as an
ASCII character on the Consoledisplay. The second function call isa 16 bit increment function. This
function returns no value, but increments the argument by one. The third function in the loop is like
the function which preceded the loop. It simply reads a byte from the EEprom at the specified address
and placesit in the variable "each_byte". These three statements will be executed until a0 is read
from the EEprom. The zero will be there because FBA SIC always terminates string constants with a
single O byte.

The last two statements form an infinite loop. The REP statement starts a structured looping block
and the L OOP statement ends the block. Since both the top and bottom of the loop are unconditional,
the TICKit will simply loop in thislocation until it is reset.

All loopsin FBASIC have one of two starting statements and one of two ending statements. L oops
can be started with either a REPEAT or a WHILE statement. The WHILE statement establish a
condition for entering and continuing the loop. REPEAT causes repetition with no condition. Loops
can be ended with either aLOOP or an UNTIL statement. The UNTIIstatement establishes an exit
condition for exiting the loop. The LOOP statement will never cause an exit, but simply causes the
body of the loop to repeat. The body of the loop must use some other means, like a WHIbEa

STORP, to exit. Any combination of beginning and ending statements forms a valid structured loop in
FBASIC.

Two other statements are associated with loops in FBASIC. The STOP statement will cause the loop
to be exited, while the SKIP statement will cause execution to jump to the LOOP statement.

15 Protean Logic

FBASIC TICKit 3 FBASIC Anatomy

3.3 Amoreelegant " first.bas"

DEF tic62 c
LIB fbasic.lib

; version 62A of TICkit

FUNC none nai n

BEG N
rs_paramset(debug_pin)
con_string("Hello Vrld...")

REP
LOCP
ENDFUN

This version of "first.bas" uses alibrarywhich has a pre-written routine for doing string output to the
console. The function "con_string" is contained in the library "constrin.lib". This general purpose
routine uses a pointer into EEprom as the pointer to the beginning of a ASCII string. The contents of
the string will be output to the Console until an O character is encountered in the EEprom. The
"con_string" library file contains:

; Generic function to output a string of characters from
; EEpromto the Consol e

LIB fbasic.lib ; This will be ignored if the root
; programreferenced fbasic.lib

FUNCTI ON none con_string
PARAM wor d poi nter

LOCAL byte each_byte
LOCAL word tenp_pntr
BEG N
=(tenp_pntr, pointer)
=(each_byte, ee_read(pointer))
VWH LE <>(each_byte, 0Ob)
con_out _char(each_byte)
++(tenp_pntr)
=(each_byte, ee read(tenp_pntr))
LocP
ENDFUN

This Library function is quite similar to the original "first.bas" except that it uses local values and a
parameter to make it a more general purpose function. The PARAMETER statement informs the
compiler that a symbol of the given type or size is going to be coming from the calling reference. The
statements in the function can have access to this data by referencing the parameter name. The
LOCAL statements are just like GLOBAL variable definitions except that they exist only to the
statements contained in the function. This saves on memory space and also prevents accidental

Protean Logic 16

3 FBASIC Anatomy FBASIC TICKit

symbol name conflictsin programs that use this library. A temporary copy of the pointer passed to the
"con_string" function is made so that the calling value is not modified.

The lines at the beginning of the file that begin with ;" are comments. Any part of aline that follows
a";" istreated as acomment and is ignored by the compiler. Thereforea™;" as the first character of a
lineis equivalent to the REMARK statement.

Examination of other libraries contained in the FBASIC Development Kit will illustrate other
programming concepts for the FBASIC language.

3.4 FBASIC line syntax (labels, remarks, conditionals)

FBASIC is aline oriented language. This means that there is really only one statement per line. There
are quite afew additional things a programmer can do with aline though, besides just putting a
statement on it. For example, aline may be blank, or it may have a comment, or it may have alabel,
or a conditional compilation directive, or it may even be extended onto the next line. The sample
program above used blank lines to keep things a bit easier to read, and the library routine above used
the ;' on afew lines to place text messages to the programmer for future reference. The code sample
below shows a few more things that can be done:

; Code fragnent to illustrate |ine syntax

ragainl con_string("hello ~
~again...\x0d") ; repeat this

| FDEF exit_capable IF ==(con_in_char(0), 23b)
| FDEF exit_capabl e QOTO donel
| FDEF exit_capabl e ENDI F

Q1o agai nl
: donel

This code fragment does not exemplify good programming practice, but it does illustrate some of the
trickier things that can be done with linesin FBASIC. Thefirst line is simply a comment line to
explain what the code does. The next line uses the ":" to associate the label "again1" with thislinein
the program. All labelsin FBASIC are local, so only other lines in the same function can reference
"againl". This same line uses con_string to output a string of characters to the console. The literal
string is abit peculiar looking, however. The "~" character is used to extend a line onto afollowing
line. Therefore, this string is actually, "hello again...\x0d". Using line extension can make a program
easier to read when lines get long. Another element of thisline that is a bit odd is the "\x0d" in the
string. The'\' character is an escape character. The escape character is used whenever something
unusual is to be done with the character, or characters, that follow. In this case the \x' informs the
compiler to insert a byte with the value of the following two hexadecimal digits. In this example, a
value of 0d is used which is an ASCII return character. The following table summarizes the escape
characters and their meanings:

17 Protean Logic

FBASIC TICKit 3 FBASIC Anatomy

Escape seq. Sequence Meaning
\R ASCII return character
\L ASCII line feed character
\\ \ character (no escape)
\" " character (doesn't terminate literal)
\' ' character (doesn't terminate literal)
\~ ~ character (doesn't extend line)
\xnn character of hexadecimal value nn (2digits)
\dnnn character of decimal value nnn (3digits)

A few lines further into this code fragment are three lines with IFDEF directives. IFDEF is a compiler
directive. The lines that follow the IFDEF <symbol_name> will only be compiled if the
<symbol_name> has been defined. In our example, the symbol "exit_capable” is tested to seeif it has
been defined previously in the program. If it has, the three lines comprising the | F statement will be
included in the compile. Otherwise, the three lines are ignored. The IFDEF directive is used by the
fbasic.lib file to include only the appropriate version of the token.lib. Thisis how DEF tickit_2 at the
beginning of the program causes the proper code to be generated for the 2.x version of the TICkit
interpreter.

3.5 Constants, constants, and more constants

The rules regarding constants are often hidden or overlooked aspects of programming languages.
FBASIC alows for different sizes of constants, different radix of constants, and some special types of
word constants which are actually pointers into EEprom storage. Why all the different types? By
expressing constants in the proper size and in the proper way, the program executes faster and more
efficiently. At the same time, the programmer can easily understand what the constants mean. For
example, the decimal number 128 may not seem structurally significant, but the binary representation
of that number, 10000000, clearly indicates that the 7th bit is set high. Constants are not too difficult
to learn provided that their basic structure is understood.

For numeric constants, the structure always starts with anumeral. Often aleading zero is used to
ensure that any non-numeric elements of the constant (like radix or hexadecimal characters) do not
fool the compiler. An optional radix indicator may follow the leading zero in the second character,
then one or more digits of the constant, and ends with an optional size indicator. For example,
Ox0fa8L is a hexadecimal constant as indicated by the 'x’, and it isa LONG size as indicated by the
trailing 'L".

Radix indicators are: Y =binary, D=decimal, X=hexadecimal.

Size indicators are: B=byte, W=word, L=long.

Protean Logic 18

3 FBASIC Anatomy FBASIC TICKit

; Exanpl es of constants

=(varl, 0y00010011b) ; the y makes it binary (base 2)
; the b makes it a byte
the x makes it hexadeci nal (base 16)

=(var2, OxffO04w) :
: the wnakes it a word

=(var3, 0d12345678l) the d makes it deci mal (base 10)

the I makes it a long

In addition to the numeric constants, there are also ASCI1 constants. The ASCII constants allow for
strings of values. Therefore, they are indicated with quotes. The " is used to indicate a word constant
which points into EEprom memory where the string of ASCII constants will be stored. The ' ' is used
to indicate a byte constant or multiple byte constantsin an INITIAL statement. Usually only the first
byte of a' ' string is used as the byte value of the constant, but the INITIAL statement is able to use all
of the byte constants and place them in allocations that can use more than one byte value. An example
of these string constantsis: "hello world", used in the first.bas program. The byte constant 'hello
world', would actually evaluate to 104, which is the ASCII code for alower case H character. Unless
inan INITIAL statement the ' " will usually only have one character in them. For example:

con_out _char("H) ; an al phanum c val ue byte constant

3.6 Using DEFINES and Constant Operators

Larger programs often have many references to the same constants. To prevent typing errors and to
provide for easy modification of the constants involved, symbols are used in place of numbers
throughout the program. This is accomplished using the DEFINE directive. The example below
shows how the constant, "temp_offset”, is used in place of the number 103b. First the symbol is
defined, then later in the program, the symbol is used instead of the number. Imagine a program that
has 45 lines of code that refer to temp_offset.

DEF tenp_of fset 103b

IF > in_val, tenp_offset)

con_out(+(tenp_offset, in_val))
ELSE

con_string("Reading out of range")
ENDI F

Now imagine that while debugging you decide the temperature offset of your device needs to be
changed from 103 to 121. A program that used the DEFINE, requires only on change. A program
that used the number in every reference would need all 45 lines changed, assuming you could find
every occurance.

19 Protean Logic

FBASIC TICKit 3 FBASIC Anatomy

Another useful tool to use with symbolic constantsis the '|' compile time operator. The "vertical bar"
operator performs a bit-wire OR of the constants adjacent to it. The example below is very common in
TICkit programs that us RS232. It uses DEFINED constants with the '|' operator to build up the
format, baud rate, and pin number used in the rs_param_set() function. This notation is much clearer
than a binary number.

rs_paramset(rs_invert | rs_4800 | pin_d5)
instead of:
rs_paramset(0Oy11000101b)

3.7 String constants and implicit allocation

Very commonly, a program needs to output a sequence of alphanumeric bytes for display. These
sequences are called strings. FBA SIC supports this common requirement by utilizing the double
guotes " " to generate a special string constant. The string constant performs two distinct operations.
First, it causes the compiler to place the contents of the quoted string into the EEprom. Second, the "
" string produces a word constant that is the EEprom address of the first character of the string. This
has the net effect of both allocating and initializing memory as well as producing away to keep track
of the constant.

The string information is placed in the EEPROMimmediately following the program tokens and a\0
(byte of value zero) is appended to the end of each string. The appended \0 at the end of the " " string
can be used to determine the end of the string and is a common convention refered to as "null
termination”.

con_string("Have a nice day\r\I") ; a word constant which
; is a pointer into EEprom

; It points to the beginning of the string,
; where the conpiler placed it in EEprom

3.8 Allocation Constants and Field Names

The last type of constants have to do with EEprom allocations. These constants provide a means of
working with EEprom storage on arecord or array basis. Some of these issues may not be clear
immediately, unless you are familiar with upper level languages which have structueapability like
C or Pascal. But these concepts are not difficult, just keep in mind that these values are not the
storage, but simply word pointers to the storage and can be manipulated like any other word size
number. Look in the Keyword section of the manual under ALLOCATRRECORD, FIELD, and
INITIAL for more information.

First, let'slook at the structure of a FIELD name. Fields are the part of arecord that actually hold
information. Records can be thought of as away to collectively refer to more than one data value.
FIELDs usually hold simple bytes, words, or longs, but they can also refer to previously defined
RECORDSs. This creates a tree system. Not only can a FIELD refer to single dataitems, it can also

Protean Logic 20

3 FBASIC Anatomy FBASIC TICKit

refer to more than one. So, by using a"count", an arrapf data items can be referred to in a FIELD.
For example:

RECCRD pr oduct
FI ELD byt e prod_nane[25]
FI ELD word prod_code
ENDREC

RECCRD deno

FI ELD | ong deno_no

FI ELD word deno_tine

FI ELD byt e nane[30]

FI ELD pr oduct deno_prod
ENDREC

ALLOCATE deno denos][50]

I NI TI AL prod_code@eno_prod@enos[0] 1001
I NI TI AL prod_name@eno_prod@enos[0] 'TI kit Assenblies'

Don't be concerned if this all seems alittle foreign right now. Remember, we are concerned with
understanding constants at this point. All the record and allocation stuff can come a bit later. From
our example though, there are six FIELD lines. Thefirst FIELD line and the fifth FIELD line all use
a"count" to indicate that the field contains 25 and 30 bytes respectively.

The sixth FIELD line shows how a FIELD in one record can refer to a previously defined record.:
FIELD product demo_prod

The ALLOCATE lineis what actually reserves the space in the EEprom. In this case it will reserve
enough room to hold all the fields for the record demo. The allocation is named "demos". Whenever
we refer to "demos” in the program, we are actually referring to the EEprom address of the first 8 bit
location of this allocation. Therefore, simply using the word "demos" in an expression isusing a
constant. The more information that is attached to demos, for example the demos[0], the further the
constant is pointing into the allocation. Records are also constants. Records named in expressions
refer to offsets within an allocation. Also, fields are simply offsets from the beginning to the record in
which they appear. The '@ is used to add up all these offsets at compile to refer to individual fields
within an allocation. For Allocations or Records where more than a single count of an item exists, a
numeric constant can be used with a @ to get to the correct individual storage element. All thisworks
out nicely as away to refer to EEprom storage symbolically.In the above structure example, the
following line outputs the product name to the console:

con_string(prod_nanme@eno_prod@enos[0])

There is one more issue related to the FIELD, RECORD, ALLOCATION scheme, however.
Occasionally you may want to know what the size of a storage element is. By using just the record
name in an expression, the size of the storage element is used in the expression. This constant is very
useful to calculate the location of a particular count storage element using variables at run time.

21 Protean Logic

FBASIC TICKit 3 FBASIC Anatomy

The " is often used in this sort of calculation. The 'loperator lets the compiler know that you
intended to use a partial field name. Without the '!I" operator, the compiler would report an error if a
partial field nameis used in an expression. This basically boils down to an array offset. Therefore, in
the following example, a 16 bit corrected value is returned from an 8 bit input that represents an A/D
reading.

RECCRD each_entry
FI ELD word adj _val ue
ENDREC

ALLOC each_entry A D correct 256

FUNCTI ON word A D adj ust
PARAMETER byt e ad_i nval
BEG N
=(exit_value, ee_read word(~
~+('a _d correct, *(ad_inval, each_entry))))
ENDFUN

The assignment statement uses a standard array calculation of an offset plus a size times the array
index to come up with the EEprom address of the correct word for the given 8 bit a_d_value.

Ok, thislast section got pretty deep. Just remember that there are constants for both the initial offset
of an EEprom allocation as well as the size of an Allocation element. When you start using the
EEprom as a storage medium, these types of constants will come in quite handy. They will also
eliminate the need to remember a bunch of numbers. Once you get a good handle on the ALLOCATE
statements, take alook at the SEQUENCEstatement. It isjust like ALLOCATE but does not use
EEprom space.

3.9 Variables, Global vs Local and precious RAM space

The discussion above dealt with constants, but the real issue in programing is utilizing variable space
efficiently. Computers of all sizes have limited resources. Small computers and controllers, like the
ones that implement FBASIC, have particularly harsh limitations in terms of RAM memory. The
TICkit 57 has only 48 bytes of RAM total while the TICkit 62 has 96 bytes of RAM. The current
FBASIC TICkit token scheme limits the maximum available RAM in any processor to 128 bytes.
RAM is used to store variable's information which changes quickly, and stack-based data such as
program flow information.

Because this type of memory is so scarce, FBASIC has provided many features to optimize its use and
organization. The issues of data size have already been discussed in reference to constants, but using
only as much space asis required for any given variable is probably more important in the discussion
of RAM than constants. Besides choosing the smallest size of variable, another option exists for
limiting the scope of a variable.

Variable scoperefers to how long, or for what section of a program, space is alocated to a variable.
GLOBAL variables have global scope. This means that space is allocated to the variable name for the

Protean Logic 22

3 FBASIC Anatomy FBASIC TICKit

entire time the program is executing. LOCA Lvariables have local scope sometimes called function
scope. LOCAL variables only have space allocated during the short period that the program is
executing in the function the variable was defined within.

LOCAL variables offer several advantages. First, they allow different functions to share the same
RAM space for variables. Second, they limit where a variable name can be referenced. This provides
the compiler with an ability to check the programmer's work. If avariable is defined only within a
function, any reference to that variable outside of the function can be assumed to be an error.

GLOBAL variables can be used by any function and actually operate alittle bit faster than LOCAL
variables. The main drawback to GLOBALS, however, is that they occupy scarce RAM space even if
the information is not being used, or is no longer needed.

Now, there is an obvious question that arises out of this discussion. What happens when the memory
space is exceeded? If there are too many GLOBALSs, the compiler will report an error. However, the
more common situation is that the memory is exceeded dynamically while the program is running.
This occurs because the compiler can not forsee how the local variables will be used and when they
will allocate memory. As the program is running and executing functions and nested functions, the
local memory stack may grow to the point that it starts overwriting the GLOBAL area. This will
usually result in strange program results.

If aprogram isusing alot of LOCAL variables and there is a possibility of a stack overflow, the
programmer should execute the program with the debugger connected in monitor mode. The
debugger continuously monitors both the stackointer and memory pointer and alerts the user if an
overflow occurs. THISIS A TRICKY SOURCE OF UNEXPLAINABLE BUGSM is agood thing
to check if a program mysteriously stops functioning properly.

The TICkit62 implements a stack overflow vector call. This was unavailable in the TICKkit57.
Basically, avector call is simply afunction that gets called by something other than the lines of your
program. In the case of the stack overflow vector, the function called "stack_overflow" will be
executed whenever the interpreter runs out of memory. Y ou can not return from this function, so this
function is typically used either to inform the programmer of something which needs attention, or is
designed in afinal product to perform a controlled shutdown. For example, the maker of an elevator
controller assumes the stack will never overflow, but if it does due to some unforseen circumstance,
he may program the elevator to apply brakes, turn off motors, and allert the security system.

3.10 Variable Arrays and I ndirection

Most of the time, variables are simply named locations in the computers memory used for storing
discrete information. Sometime, though, arrays are used to allow run-time distinction between
variables. When avariable or dataitem is refered to by name it is called a direct reference. There are
times when a generic piece of a program is to operate on data items which are to be determined by the
execution of the program not just the position in a program. In this case, we need away to change the
reference to data under program control. Thisis most commonly accomplished using one direct
variable to "point” to another data element. This reference is refered to asindirect. FBASIC allows

23 Protean Logic

FBASIC TICKit 3 FBASIC Anatomy

explicit pointers with ALLOCATIONS but not with variables. Variable indirection can only be
accomplished implicitly with Arrays. Array variables ook just like any other variables except that
they usethe "[]" charactersto indicate an array index. Thisindex can be a constant or another byte
size, variable expression. The "[]" are also used in the array definition like a GLOBAL or LOCAL
statement to indicate how many elements will be in the array of that name. Arrays can be viewed as a
finite number of similar sized storage elements lined up in arow in memory. The entire row is
referred to by the name of the array, and the individual elements are refered to by a combination of
the name of the array and a number index that indicates which element, from the beginning of the
array, to use. Anindex starts at O for the first element and continues up to the size of the array less
one.

There are actually two types of arraysin FBASIC. There are variable arrays and allocation arrays.
Both allow indirect reference to memory, but the variable arrays are used to access the internal RAM
of the processor and are very fast. The allocation arrays are used to conveniently calculate offsetsin
EEprom or some other off-processor memory resource. These array elements have to be de-referenced
(read or writen) explicitly with read and write functions and are typically alot slower to access than
variable arrays.

Arrays are used most commonly to refer to elements that are handled the same for one purpose, but
differently for another. For example, we might have a routine that manipulates dates and times that
are read from a clock device. In this case, we will want to read all the clock information in at once so
there is no minute, second, or hour roll-over between consecutive reads from the device. A single
routine reads 16 bytes of information in from the clock 1C into an array of values and treats all of the
bytes the same. The display routine is only concerned with certain array elements and treats each
element differently. The example below demonstrates this:

; programfragment to illustrate the use of arrays
G CBAL byte read_val s[16] ; define 16 el ement array of
; byte val ues
FUNC none read_ic ; reads all 16 bytes fromthe
; device
LOCAL byte val _nunb Ob
BEG N
read_ic_init() ; gets the ICready to xmt all regs

=(read_vals[val _nunb], read_ic_byte())
; the above |line assunes that a function
; called read_ic_byte will return the
; next consecutive register of the clock
; 1Cinternal nemory

++(val _nunb)

UNTIL ==(val _nunmb, 16b)
ENDFUN

Protean Logic 24

3 FBASIC Anatomy FBASIC TICKit

FUNC none di splay_tine

BEG N
lcd_string("The tinme is: "
lcd wite_num read vals[5]) ; b5th element is hours
lcd_send(":")
lcd wite_num read vals[6]) ; 6th elenent is mns
ENDFUN

3.11 Functions, parameters, and exit value

The discussion of variables above suggests that functions have some special significance besides just
being subroutines. Thisis exactly the case in FBASIC. Functions are used extensively in expression
evaluation and device driver creation. Functions are just small sections of instructions which act like
mini-programs. They can have their own memory variables, their own compile defines, and some
special names for input and output.

Functions have some very special local values called parameters and exit_value. These local values
are used to get information into the function from the rest of the program and to return values back to
the rest of the program.

The exit_value is used as the default method of returning a single value to the rest of the program. It
isvery common for a section of a program to need to return back one result. Thisis so common that
FBASIC has dedicated a symbol named "exit_value" as a pre-defined local symbol in every function
which is declared to return a value. For each function, exit_value will be of the type and size that the
function was declared to be and can be assigned and manipulated just like any other local variable.
When an EXIT or ENDFUN is encountered, the data contained in the exit_value is sent back to the
calling program as the value of the function.

Parameters are the opposite of exit_value, but can be used to return information also. Parameters
appear aslocal variables, but are really just pointers to variables in the calling program. This gives
the function the ability to indirectly refer to data the calling program has for varying situations. The
function can read and manipulate pointers. Keep in mind that any change to a parameter in a function
will be reflected in the corresponding variable of the calling function or program. It is usually good
programming practice to avoid modifying parameters.

The following simple example illustrates how an addition function can be made:

FUNC word pl us

PARAMETER word val _1

PARAMETER word val _2
BEG N

=(exit_value, +(val_1, val_2))
ENDFUN

An example of the use of the plus function as we defined it above would be:

=(sumval plus(val _1, val_2))

25 Protean Logic

FBASIC TICKit 3 FBASIC Anatomy

This returns with the word length sum of val_1 and val_2 and assigns that value

to the variable sum_val of word length that must have already been defined as a global or local before
using it in the call to the plus function.

Thisis sort of atrivial example, asa'+' is used to implement the 'plus function. A more likely case
would be a keyboard input routine, which might return the ASCI1 value from aroutine that scans
keyboard hardware.

Just to make this discussion relevant, the following code sample comes from the file "1tc1298.lib" and
shows how alibrary can be used to make a generic driver for an IC.

3.12 A devicedriver library for the LTC1298 (12bit A/D)

Functions to control A/D
These functions rely on three defines to work properly

cs = Chip Select pin 'Mst have a separate |line
; clk = dock control pin 'Can share a data line '
; data = data pin 'Can share a data line i.e. an LCD

; Routine to read a data froman LTCl1298 or LTC1288 A/ D chip

Protean Logic 26

3 FBASIC Anatomy

FBASIC TICKit

FUNC word read |tcl1298
PARAM byt e config

Thi s val ue indi cates node and channe

for the A/'D chip.
bit 7 = node (O=single end,

bit 1-6
bit 0 =
LOCAL byte count Ob
BEG N
pin_low(Itc_clk)
pinlow Itc_cs)
pin_high(lItc_data)

pul se_out _high (ltc_clk, 10w)

I F b_and(
pin_low ltc_data)
ELSE
pin_high(Itc_data)
ENDI F

pul se_out _high(Itc_clk,
IF b_and(config, 1b)
pin_high(Itc_data)
ELSE
pin_low ltc_data)
ENDI F

10w)

pul se_out _high(Itc_clk,
pin_high(Itc_data)
pin_high(Itc_clk)

=(count, pin_in (Itc_data))
pinlow Itc_clk)

=(count, 0b)
=(exit_value, Ow)

10w)

p
I

config, Oyl10000000b)

1=differential)

channel sel ect
olarity for differential or
sb channe

sel ect

start bit

differential conversion?

sel ect channel or polarity

use nsb first fornmat
clock in the nmsbf bit
make data line an input
return clock to |l ow state

get data | oop ready

clock for next bit

=(exit_value, <<(exit_value)); shift exit to left

REP
pul se_out _high(Itc_clk, 10w)
IF pin_in(Itc_data)
++(exit_value)
ENDI F

++(count)
UNTIL ==(count, 12b)

pin_high(Itc_cs)
ENDFUN

27

Protean Logic

FBASIC TICKit 3 FBASIC Anatomy

The example above is a bit lengthy, but is aworking example of a device driver using a function with
parameters. The parameter is a single byte and tells the device how to configure its 2 input channels.
Depending on the level of the 7th bit and the 1st bit this device can do either differential or single
ended conversions and it can be programmed to return the level of each channel individually or the
difference of the two channelsin either polarity. The protocol for sending this information and
retrieving the conversion result is not highly complex, but could easily waste a day of time to figure
out and debug. If you wanted to use an LTC1298 in your design, you would not need to worry about
the communications protocol. Asin the program sample below, you would simply include this library
routine in your program and call the function. The program below reads the two channels of the
LTC1298 and captures the data on a PC using the ACQUIRE.EXE program. The example is
complex, but should give you some ideas of what can be done with the TICKkit. This program would
work with up to 26 TICkitsin a small data aquisition network.

; This programuses an LTC1298 or LTC1288 (3v version)
; to take 12bit anal og vol t age readi ngs once a second
; and sends these readings to a PC consol e

; running the ACQU RE program

; This programis designed so that multiple TICkits can be
; connected to this wire in a multi-drop configuration.

: Thanks to Scott Edwards for his Jan 1, 1996 "Nuts and Vol ts"
; article highlighting the use of the LTC1298 with the TICkit.

; Witten by: denn dark
DEF tickit d LIB fbasic.lib

DEF Itc_cs pin_DO ; pin DO connects to Itc chip sel ect
DEF Itc_clk pin_D1 ; pin DL connects to ltc clk line
DEF Itc_data pin_D2 ; pin D2 connects to ltc data line
LIB 1tc1298.1ib ; contains routine to drive LTC1298
DEF designation 'a' ; this is the polling code for the PC

; for multiple TICkits connected to
; the serial wire

DEF net _pin pin_A7 ; this is the network aquisition pin

Protean Logic 28

3 FBASIC Anatomy FBASIC TICKit

FUNC none |ine_sync
LOCAL byte match_count Ob
LOCAL byte rs_errors
BEG N
REP
IF ==(rs_receive(O, rs_errors), designation)
IF ==(rs_errors, 0Ob)
++ (match_count)

ELSE
=(match_count, Ob)
ENDI F
ELSE
=(match_count, 0Ob)
ENDI F
UNTIL >=(natch_count, 2b)
del ay (1)
rs_send (designation, 0b)
ENDFUN
FUNC none rs_out ; convert word to serial string
PARAM word in_val ; paraneter is destroyed
BEG N

rs_send(+(48b, trunc_byte(/(in_val, 1000w))), Ob)
=(in_val, % in_val, 1000w))
rs_send(+(48b, trunc_byte(/(in_val, 100w))), Ob)
=(in_val, % in_val, 100w))
rs_send(+(48b, trunc_byte(/(in_val, 10w))), Ob)
=(in_val, % in_val, 10w))
rs_send(+(48b, trunc_byte(in_val)), Ob)

ENDFUN

29 Protean Logic

FBASIC TICKit 3 FBASIC Anatomy

FUNC none mai n
LOCAL byte tic_count

BEG N
pin_high(ltc_cs)
pin_low(Itc_clk)
rs_paramset (rs_invert | rs_9600 | net_pin)
rs_stop_chek ()
rtcc_int_256 ()

REP
=(tic_count, 150b) ; used 150 instead of 156
; to fudge latency tine and
; probable xmt del ays
VWH LE tic_count
rtcc_wait ()
rtcc_set (6b) ; divide by 250 (256 - 250 = 6)
; enough tine for approx 128 tokens
; results in 78.25 readings per sec
-- (tic_count)
LOCP ; this loop should exit every 2 secs
i ne_sync()
rs_send(':', 0Ob)
rs_out(read_|tc1298(0Ob))
rs_send(' ', 0Ob)
rs_out(read_|tc1298(1b))
rs_send(13b, 0b)
LocP
ENDFUN

This program uses the internal RTCCcounter of the TICkit to take readings approximately every
second. There are many librariessupplied with this development kit which are not documented in this
book. Use your text editor to look at all the *.1ib files to see what is available. Also, check in
periodically with the Protean BBS or Protean home page to see if new function libraries are available.
Most of the libraries have some documentation in their source and can be used "as-is" to accomplish
many interesting things.

3.13 Captain, | think the functions are overload'n!

One last interesting feature of FBASIC isthat it can overloadlunction names. This means that
different functions can have the same symbol name. Thisis very useful for generic functions that
perform similarly but the data they operate on differs. For example, when adding numbers, different
variable precisions can operate more efficiently than others. The "+" sign is still the ideal symbol for
all addition functions, though. FBASIC will count the number of arguments in afunction reference
and consider their types to determine which of the many possible "+" functions to use in each case.
Therefore, adding two bytes can use a different routine than two 32 bit longghile still using the "+"
symbol for the function.

Protean Logic 30

3 FBASIC Anatomy FBASIC TICKit

In the example of the function "plus" in section 3.10 of this manual, to make it work with byte values
and 32 bit long values it would be necessary for the programmer to create functions exactly like
"plus’ using byte and long types for the PARAMETER definitions. These functions would normally
be collected together in alibrary of similar functions.

Programmers may wish to take advantage of this feature as they write special 1/O libraries. Careful
use of this feature can make nice general purpose libraries.

3.14 What's Next?

This discussion only begins to cover the FBASIC language. The programmer needs to review the
KEYWORD summary and the standard library summary for more information on the FBASIC
language. The next chapter gets provides many examples. If this chapter gets boring, simply skip it
and start writing some programs. When you need a function or flow control capability, look to the
KEYWORD summary or standard library summary to find what you need. Spend some time looking
at the sample code and the supplied libraries.

3.15 Check out the the Protean Web Site

The Protean web site (http://www.protean-logic.com) is good source for information and sample
programs. Many programs and libraries are posted on the site for usersto draw on for their own
applications. The message area can be used to ask other users questions, or to share ideas, etc. Leave
comments and questions on the web site to the page master. Protean checks these messages
periodically and will respond to messages as soon as possibl&njoy the FBASIC TICkit!

31 Protean Logic

FBASIC TICKit 4 Simple Examples

4 Simple Examples

4.1 A simple program to blink an LED

After you get your TICKit up and running the "Hello World..." program, a good second program is a
simple program to blinkan LED. This assures that you understand basic I/Gand how to connect
devices electrically to the TICKkit. In this example a general purpose I/O pin drivesan LED viaa
current limiting resistor, R1. The output is wired to be low active, which meansthe LED islit by
outputing aground level. It is desirable to drive higher current devices at ground level because the
internal nature of the TICkit processor can drive higher currents from ground than from +5 vdc. The
circuit is shown below.

An LED (Light Emitting Diode) is a special
diode fabricated to glow brightly when a current]
passes through it. Like all diodes, it has a
polarity.

In the schematic symbol, the arrow should point
to the more negative connection to forward bias
the LED. The cathode (the terminal the arrow
pointsto) is usually indicated by aflat side on
the LED. The anode (the terminal the arrow
points away from) usually has the longest lead.

Because an LED's junction drop is 2 volts, a
current limit resistor is required to prevent the
LED from burning out in a5 volt system.

NS EEEE

Thiscircuit is very simple. When your program instructs, the TICKkit processor will turn on an

internal switch that connects the pin labeled DO to the ground. This completes a circuit in which
current flows from the +5 vdc power supply input, through the forward biased LED, through the 330
ohm current limiting resistor and then through the TICkit processor to the ground of the power
supply. No other pin of the TICkit module need to be connected. For the +5 vdc input you can use any
regulated power supply. Many people have accessto a5 volt supply. If not, you can use one of the
circuits shown in the next section as a power supply. Any of the general purpose outputs can be used
for this program (pins labeled DO through D7 or AQ through A7). They all function in the same way.
When writing your programs refer to the pins through their cooresponding symbolic names. For
example the pin labeled DO is symbolically refered to as "pin_d0" within a program just as the pin
labeled A5 iscalled "pin_a5". The symbols for the pins are actually numeric constants that evaluate to
a number between 0 and 15. Pin DO is pin number O, pin D1 is number 1 etc. and pin AO ispin
number 8, pin Al is pin number 9 and so on. It is usually preferable to refer to constants by symbolic
name as it makes the program easier to understand and allows easier modifications later on. Numbers
or variables can be used in the pin_high() or pin_low() functions when your application can benifit
from a pin reference that is variable.

Protean Logic 32

4 Simple Examples FBASIC TICKit

The program for blinking the LED is equally simple. Most of the program is the required fbasic
verbage to inform the compiler of the version of the TICkit and where to start the program. Before
showing the final LED blinking program, examine the program below to simply turn on the LED.

DEF tic62 c
LIB fbasic.lib

FUNC none mai n

BEG N
pin_low(pin_do) ; this is the same as pin_low 0)
REP
debug_on()
ENDFUN

The first function this program executes is the pin_low(pin_dO0) line. This function makes the
specified pin an output and switches it to ground. Once this line executes, the LED ison. The lines at
the end of the program are there because of the nature of a controller. The TICkit is a controller
computer. This means it presumably controls something. In the above program, the last three lines
make the program continually ask to connect to the console. If these lines were not there, the TICkit
would have no idea what to do when it finished the function, so it would execute random garbage
contained in it's eeprom. This could reset the processor or do virtually anything. By putting the loop
at the end of our program, we can be sure that the processor is occupied in the loop and the LED stays
on for us to observe.

Most control programs are just big loops. They execute the same basic task over and over their entire
life. Asyou write more programs you will see this tendency emerge.

Okay, lets make the light blink. This next program does indeed blink the light, but does not give
satisfactory results, see if you can discover why:

DEF tic62 c
LIB fbasic.lib

FUNC none mai n

BEG N
REP
pi n_l ow(pin_do)
pi n_hi gh(pin_do)
LocP
ENDFUN

Did you figure it out? The pin_d0 will indeed turn the LED on and off, but at so fast of arate that it
appears to be on constantly. This effect is useful for multiplexing, but not for blinking some lights.
The correct program needs some delay for both the on state and the off state. If you have more delay
in the off state than the on state, the LED will appear dimmer. If you have more delay in the on state

33 Protean Logic

FBASIC TICKit 4 Simple Examples

than the off state, the LED appears brighter. This is an important concept called pulse width
modulation (PWM) that we will discussin detail later on. The correct program for a 1 second blink
rateis as follows:

DEF tic62 c
LIB fbasic.lib

FUNC none mai n

BEG N
REP
pi n_l ow(pin_do) ; turn LED on
del ay(500) ; leave LED on for 500/ 1000 of a sec.
pi n_hi gh(pin_do) ; turn LED of f
del ay(500) ; leave LED off for 500/1000 second.
ENDFUN

The delay() function halts the processor for the specified number of milliseconds (1/1000 second).
The delay function expects to see a number between 0 and 65535 (the range for a 16 bit word). Feel
free to modify this program. Control more LEDs, or maybe increase the blink rate by lowering the
delays. If the blink rate is less than about 1/30 of a second, the LED appears to be on constantly. At
this rate, you can alter the relative on and off delays to observe the effects of PWM. The following
code produces a continually glowing LED at about 1/2 brightness.

DEF tic62 c
LIB fbasic.lib

FUNC none mai n

BEG N
REP
pi n_l ow(pin_do) ; turn LED on
delay(15) ; leave LED on for 15/1000 of a sec.
pi n_hi gh(pin_do) ; turn LED of f
delay(15) ; leave LED off for 15/1000 second.
ENDFUN

There is another way to turn off the output of a pin besides changing the level of its output. Y ou could
use the pin_in() function as shown below.

Protean Logic 34

4 Simple Examples FBASIC TICKit

DEF tic62 c
LIB fbasic.lib

G CBAL byte trash ; an 8 bit variable used bel ow
FUNC none mai n
BEG N
REP
pi n_l ow(pin_do) ; turn LED on
del ay(500) ; leave LED on for 500/1000 of a sec.
=(trash, pin_in (pin_dO0)) ; turn LED of f
del ay(500) ; leave LED off for 500/1000 second.
ENDFUN

The pin_in function makes the specified pin an input and reads the level on the pin. A O isreturned if
the level islow (<2.5 volts) or 255 if the level is high (>2.5 volts). In our example, we do not care
what the level is on the pin, we just want to turn off the output and make the pin an input. The
returned value must be assigned to something though, or the compiler will generate an error because
it knows the pin_in function returns a number and expects the program to use that value. Examples of
the pin_in() function are used extensively in later examples to read button presses.

4.2 Construction techniques and power sources

L ets take a minute and talk about the nuts and bolts of making projects. The TICkit moduleis
designed to easily plug into a solderless breadboard. These are readily available from most electronic
parts stores, including Radio Shack. Almost any 6 volt battery can be used as a power source for a
TICkit, but make sure you do not use any battery with more than 6 volts output or you will fry the
TICKkit processor.

Thereis a power supplyand construction areafor a TICKkit project on the T62-PROJ project board if
you are making a more permenant project. Y ou can just use the power supply on the T62-PROJ board
by soldering wires on the +5 and ground buses and plugging these into a solderless breadboard.

The more reasonable approach is to make or purchase a +5 volt regulated power supply. To make
your own, you can use the following circuit based on a 7805 (LM 340). All of the parts required for
this supply are readily available from parts stores including Radio Shack. The unregulated DC source
can also be awall mount transformer supply.

)1
7805T

III'I_II

D1
Unregulated DC Source Full Wave

SWit T1
power g3 vac CT

110 Voc “ %

35 Protean Logic

S Vdc
output

6.2 Vdc ce-

0u+‘ minimum '|' uF 10uf”]
5

\I
}I

Volt Regulator

FBASIC TICKit 4 Simple Examples

The circuits shown above are suitable for most typical applications. More advanced projects might
require regulators with lower queisent (no load) power consumption to conserve battery power, or you
might need more voltages than just +5 volts. There are many, many good texts on power supply
design and countless monolythic IC solutions for any of a wide range of power requirements. All the
TICkit directly needsis agood 5 volts with a reasonably sharp rise time. The 20 MHz TICkit62 itself
consumes less than 30ma not counting loads you place on it. The 4 MHz TICkit 62 uses less than
15ma unloaded.

4.3 A simple PWM circuit for controlling a low voltage DC motor.

We have already touched on the idea of pulse width modulation in our blinking LED example. PWM
isaway of producing a variable power/voltage/current output from a switched output. The TICkit 62
has no analog output, only digital (switched) outputs, so PWM isthe only direct way to produce a
variable (analog) output. The TICkit 62 has two methods of producing PWM directly. The first uses a
built in function called "cycle§)" to produce a square wave of given duration, frequency, and duty
cycle, on any of the general purpose I/Qins. The second method uses some dedicated hardware built
into the TICkit 62 processor for continuously producing a PWM output. This method can only
produce PWM on the pin labeled "A2'CCP". CCRtands for Counter/Capture/PWM. This second
method can actually perform 10 bit PWM.

This program uses the cycles function
MOD1 :
T62H64C to produce a ramping voltage between

la M-% 0 and 5 vdc. The meter can be a
3 ",f;'s_ag voltage meter or an O-scope if you
D6[=¢ 1
s g?g Bl ohm have one.
:;,lg:; x If R2 is disconnected, the voltage
ﬁ 32 ciL re< | repeatedly ramps up to 5 volts then
3t 10uf T 47KZ | ramps down to zero cleanly. With R2
29 N in circuit, thereis arelatively large
28 . spike at the end of the ramp and the
27 .
26 ramp gets slugish toward 5 volts. These
25 +5 Vdc distortions occur because R2 loads the
24 Power Source L
23 circuit when there are program
= <
22
{E3

interruptions in the PWM output.

As this circuit demonstrates, the cycles() method of producing PWN& sufficient only if the circuit
will not be loaded very heavily. There is arelationship which exists between the driving capability of
the PWM device (the TICkit and series resistor), the size of the capacitor, the frequency of the PWM
signal, and the load size. If the frequency is high enough, even larger loads can use this method.

Notice in the program that follows, that each time the cycles function executes, only 20 square waves
are generated. Between each execution of the cycles function, the program does some math and some

Protean Logic 36

4 Simple Examples FBASIC TICKit

flow control. Even though these other program steps take only a small fraction of time, it is enough of
a break in the PWM output to create a glitch when there is much load at all on the output. This type
of glitch is virtually unavoidable when using a software emulation method to generate PWM.

DEF tic62 c
LIB fbasic.lib

G CBAL word duty cycle ; make roomfor a variable and give it a name

DEF wave_| engt h 256 ; produces a pul se frequency of approx 11KHz
DEF per_l evel 20 ; produces a ranp requency of approx 550Hz
FUNC none mai n
BEG N

pin_low pin_d4) ; make pin D4 an out put

=(duty_cycle, wave_length)
RE

REP
cycl es(pin_d4, per_level, duty cycle, wave_ |length)
--(duty_cycle)

UNTIL ==(duty_cycle, 0)

REP
++(duty_cycle)
cycl es(pin_d4, per_level, duty cycle, wave_ |length)
UNTIL ==(duty_cycle, wave_length)
LocP
ENDFUN

One way in which to get alarger driving capacity out of this method of PWM isto connect the
unloaded PWM output to some type of linear amplifier like an audio output amp. This works well and
eliminates the problem with the limited drive capacity of the TICKkit aswell as the "glitches" when the
TICkit isin between cycles() functions as the program executes. The problem with this method is that
it is very power in-efficien. When the output of the amplifier is mid-way between ground and max
voltage output, the difference between the max voltage and the output must be dissipated by the
amplifier. This generates alot of heat and wastes alot of power. The follwing diagrams show the
amplifier arrangement and compare it to a variable resistor. The power dissipated by the resistor is
equal to the product of the voltage it drops times the current flowing through it. A switchislike a
very large value adjustable resistor adjusted to one extreme or the other. So either it drops zero
voltage, or it passes zero current. In either extreme the power dissipated is zero because the product of
anything multiplied by zero is zero. Now, if this resistor is adjusted mid-way, like our amplifier
producing a half voltage output, the power is equal to 1/2 of the max voltage times the current drawn
by the load. Just for argument, assume we are dealing with a 5 volt system and aload that draws 1
amp at 2.5 volts. If the amplifier is outputing 2.5 volts it must be droping the remaining voltage (2.5
volts). Thismeans that it is dissipating 2.5 watts (2.5 v * 1 amp). Which is exactly what the load is
consuming. Half of our supply energy is wasted and we have a significant heat problem.

37 Protean Logic

FBASIC TICKit 4 Simple Examples

MOD1
Té2H64C 09 Vdc
le— 140
B (E5
% z Rl AMP1 AMP1
5 = 330 ohm Pow{ amp Variable Resistance
7 34 Wy + varies in porportion
L g - = Load to input voltage
T

= 10uf Pamp = Vamp % I

39 (motor)

28

2 Load

lggugrg cSource
Pload = Vload * I

Now lets deal with the actual best way to use the TICKkit 62 to control a DC motor. This approach uses
the built in hardware to generate continuous PWM. Instead of a built in software routine turning a
general purpose pin on and off, the TICKkit 62 uses dedicated hardware to turn pin A2'CCP on and off
on the basis of values contained in special registers. The TICkit 62 provides functions to set these
registers and the hardware does the rest independent of what our program is doing. Thisis called
background functionality.

We control an internal timer, called timer2, to generate the pulse frequency for our PWM. Timer2 has
acontrol, a period, and a count register. These determine the frequency of the PWM. To make the
TICkit 62 actually perform PWM, the CCP registers must be configured. These are the control and
CCP data registers. Once configured, you write to the CCP data register to control the duty cycle.
There are symbolic names for values that can be write to the control register. These constants are
defined in the token library. The program looks like this:

DEF tic62 c

LIB fbasic.lib

G CBAL word ccp_reg ; CCP register is actually a word (16 bit)

; but only the lower byte (8 bits) are used.
; The high byte is used internally as a

; buffer. The Alias statenent |ets us

; conveniently refer to the | ow byte

ALI AS byte ccp_duty ccp_reg O

Protean Logic 38

4 Simple Examples FBASIC TICKit

FUNC none nain

BEG N
pin_low pin_a2)
tnr2_cont_set(tnr2_con_on)

tnr2_period_set(255b) ; this produces a pul se frequency
ccpl_cont _set(ccp_pwm) ; of 19531 Hz. d ock frequency/ 256
=(ccp_duty, 0Ob) ; now our CCP unit is set up to do PWM
REP this is the nain | oop
REP ; this | oop decreases notor speed
--(ccp_duty)
ccpl_reg_set(ccp_reg)
del ay(10)
UNTIL ==(ccp_duty, Ob)
REP ; this loop increases notor speed
ccpl_reg_set(ccp_reg)
del ay(10)

++(ccp_duty)
UNTIL ==(ccp_duty, Ob)
LocP
ENDFUN

39 Protean Logic

FBASIC TICKit 4 Simple Examples

This circuit controls arelatively
large DC motorrunning at a
supply voltage of up to 50 volts
follows. This circuit can
conceivably switch upto 5
L Motor_Supply amps with this single switching

0 to 50 Vd i ;

° c transistor and flyback diode.
Logic Supply
+5 Vdc

nc.
ne
7
D6
5
04
3
02
n

Realistically, however, you
should only use this circuit for
switching 2 amps or less. If you
DC| Motor | are going to switch higher
currents, R1 should be reduced

< Common Ground

to 150 ohms.
No interface components are
al shown in the diagram.
Rl MJE3055T
1K
W 1N4003

R2
330

The transistor, Q1 is operated as a saturation switch. This means that when A2 is high, the current
allowed to flow through the transistor via R1 is significantly greater than the load current divided by
the transistors Gain Said another way, we are driving the transistomway on. This makes the

transistor act like a switch, either it is off and has no current flow, or it is on and has virtually no
resistance. The diode D1 and resistor R2 are designed to drain off the parasitic flyback voltage created
when current is removed from an inductor (the motor in this case). Bypassing the reverse EMF or
flyback voltage safegaurds components and reduces heat load on Q1.

4.4 Controlling relays for motor direction and electric braking

Now that we have a means for varying the drive to a motor or some source like it, we may need to
reverse the direction of the motor or provide a means for braking. The easy way to do thisiswith
relays. Driving relaysis actually very easy with the TICKkit. Our circuit will use an IC which has
several transistors in them arranged as darlington pairs. This single 1C will provide buffering for up
to 7 relays. We only need to drive two for this example.

Relays are simply magnetically operated switches. When the coil is energized, the switch is thrown.
Two different types of relays are used in this example, oneisa DPDT (double pole double throw) for
motor polarity, and the other isa SPDT (single pole double throw) for braking. The circuit shown
below is very similar to the last circuit except that the relays change how the resulting power is
applied to the motor. The relay K1 in its un-energized position connects the motor to achieve forward
rotation (forward rotation is assigned by convention of the motor's manufacturer . When positive

Protean Logic 40

4 Simple Examples FBASIC TICKit

voltage is applied to the motor lead marked as positive the motor rotates forward). When K1
energizes, the positive of the motor is connected to ground and the output of the PWM is connected to
the negative of the motor, making it rotate in reverse.

Relay K2 controls whether the positive of the motor connects to K1' output or if it is shorted through
R3 to the negative of the motor. When K2 is un-energized, the motor sees power from the PWM and
direction control circuits. When K2 is energized, the motor is connected to aresistive load that
impedes the rotation of the motor. If the motor is not shorted when power is removed, it simply
coasts. If the motor is geared there may be some self braking, but braking capabilities are usually
required.

MOD1
Té62H64C
1 40
2] 39
3] 38
4 37
=1 K1
0 = | motor supp eV T
otor Supply]
“ = 12 Vde —%To— B seor
8lr 33 10— o
9 lerdata 32 Logic Supply ar Sar
ol Dot |38 +5 Vdc DC| Motor
1 30 +
iz[bsc2 Vdd =5
3]A0TrrL 28 —— Common Ground
i4] 27
15 26
16 5 53
td
18]
19
20

R MJE3055T
1K
W 1N4003
R2
330

The following program illustrates these types of controls. The program sets up the PWM, turns the
motor on at half speed and rotates it forward for 1 second, removes power and brakes the motor for 3
seconds, reverses direction and powers the motor at 1/4 speed for 2 seconds, removes power and lets
the motor coast for 6 seconds, then repeats the process. A real control program probably has some
type of user interface for setting motor speed and direction instead of a hard coded routine. Y ou can
use the consol e statements with the download cable to make an elementary front end as a further
programing exercise. An item that is usually found in this type of program is an acceleration and
deceleration routine. If you have delicate instruments or payload handled by the motor, you don't want
it damaged by inertial forces as your motor slams on and off. Play with different ideas and see what
you come up with. Thisis the essential electro-mechanical motor control circuit.

Asyou can see from the program, to energize arelay, perform a pin_hidh on the specified I/O pin.
In this example we are using a 12 volt supply for both the motor and the relays. If the motor isreally

41 Protean Logic

FBASIC TICKit 4 Simple Examples

large and has large acceleration loads, you might need to separate the supplies to prevent the relays
from dropping when the motor starts. Also, you might use a larger voltage on the motors, which
either the relay’s voltage will need to match, or a separate lower voltage supply will be required for
the relays.

DEF tic62 c
LIB fbasic.lib

G_CBAL word ccp_reg
ALI AS byte ccp_duty ccp_reg O

DEF notor _reverse pin_a4 ; use synbolic nane for direction 1/0O
DEF not or _brake pin_a3 ; use synbolic name for braking
; notice that the nanmes inply the
nmeani ng when the 1/Ois high

FUNC none mai n
BEG N
pin_low pin_a2)
tnr2_cont_set(tnr2_con_on)
tnr2_period_set(255b) ; this produces a pul se frequency
of 19531 Hz. d ock frequency/ 256

ccpl_cont _set(ccp_pwm)
=(ccp_duty, 0Ob)
ccpl_reg_set(ccp_reg) ; turn notor off

Protean Logic 42

4 Simple Examples FBASIC TICKit

now our CCP unit is set up to do PW/
repeat sequence of notor novenents.

pin_l ow(notor_reverse) ; motor in forward dir

pi n_l ow(notor_brake) ; motor is under power

=(ccp_duty, 128b)

ccpl reg_set(ccp_reg) ; power notor at 1/2 speed

del ay(1000) ; wait 1 second.

pi n_high(notor_brake) ; renove power and brake the notor

=(ccp_duty, 0Ob)
ccpl reg_set(ccp_reg) ; put PMMat O

del ay(3000) ; wait 3 seconds

pi n_hi gh(notor_reverse) ; nmotor is reversed
pi n_l ow(notor_brake) ; release the brake
=(ccp_duty, 64b) ; power at 1/4 speed
ccpl reg_set(ccp_reg)

del ay(2000) ; wait for 2 seconds

=(ccp_duty, 0Ob)
ccpl reg_set(ccp_reg) ; put PMMat O
del ay(6000) ; wait 6 seconds
LocP
ENDFUN

43 Protean Logic

FBASIC TICKit

4 Simple Examples

0 +5 vdc O +5 vdc
+Vmotor
u3 Q3 U4 Q4
4]35,36,37 MJE2955T 4N35,36,37 MJE2955T
2
R3 R4
) 330§ 330§
D8
“/Red RS
1ngo 15K 15K
D3 D4
1N4003 4> 1N4003 4>
[+
Cont A>— R10
150
Cont B wWW
DS
59 DL D2
C Red RS NG00 T D6 R6 ORCLS
1.5K e 1.5K
U1 u2
4{135,36.37 6 o1 4{135,36.37 Q2
MJE3055T MJE3055T
2 S
: : S S
330 330
-Vmotor

The solid state equivelent of the relay and PWM transistor is called an 'H' bridge. A schematic for a
working H-bridgeis shown above. The resistor values were selected for a 12 volt motor @ 2 amp
max. If contA and contB are at the same logic level, the motor is not being driven. If contA islow
and contB is high, the motor spins forward. If contA is high and contB is low, the motor spinsin
reverse.

4.5 Closed Loop Circuit Feedback in Control Circuits

Most control systems, especially those dealing with mechanical control, use a feedback system to see
if the desired positioning has indeed taken place. When an action is double checked by a sensor and
corrective action is taken the control mechanism is called "closed loop". Thisis similar to sending a
registered letter through the mail with areturn receipt requested. Y ou can be sure your letter was
indeed delivered. Ordinary mail is "open loop" and you rely on the integrity of the postal system to
get your mail delivered, and you tolerate some lost mail.

In the next example a quadrature encoding sensor is used with an index sensor to locate the absolute
position of arotating shaft. Although we won't put all the electronics for driving the motor in the
schematic, these additional components could easily be incorporated with a motor driving circuit like
those talked about earlier.

First, what is a quadrature encodingsensor. An encoding sensor is a collection of switches, either
mechanical, optical, or magnetic that indicate the angular position of a shaft. These types of encoders

44

Protean Logic

4 Simple Examples FBASIC TICKit

usually have between 16 and 512 positions per revolution. Some encoders produce an absolute binary
or Gray's coded position output. The one used in this example is arelative position sensor that
produces a quadrature output. The output waveforms look as shown below. When the sensor rotates in
one way, signal A's phase leads signal B's, when the sensor rotates the other way, signal B's phase
leads signal A's. The sensor electronics need to watch these two signals to increment or decrement a
counter. We assume the motor and mechanical inertia of the system prevent the signals from

changing too fast. Thisis areasonable assumption when the motor's output shaft is geared down. If
there are more than 20 phases per second per signal, dedicated electronics are needed to count the
position.

«————Reverse rotation———— «——Rotation Stopped—— «————Forwaord rotation— 48 ——

Signal Aﬁ _/—\—
Signal BJ—\—/—\ m

Earlier we said the quadrature encoder gives relative position. By this we mean an additional signal,
called an "index", is required in the system to reset the position count in the controller. When power
isfirst applied to the system, the controller must turn the motor on in the direction toward the index
mark. When the index signal switches, the controller must reset the counter. After this step, the
controller has the absolute position of the system mechanics.

4%91%40 +5 vdc >——
1 4 RBL Rotary Encoder
2] 3 oK =R
3 38 swa 1%
4 3z |B2 Signal B o
3] 36 ek i output L 55
6] 33 a—
4 34 SWi
8 33 Slgnul A ground
2 32 Is Equivilent T
10 31 0 O s Equivilen o
u gg +5 vdc
28 R2 3
27 28K 330
26 Sw3 output
R3
25 2eK Inelel x g%\oto Transistor, LED]
—WV 06 —
—
" Optical I Interrupter
grount

The diagrams show an endoder circuit and how an opticalndex is created. The LED is continuously
lit and an optical interrupting fixture is connected to the rotating shaft so that only one position
interrupts the beam. When the interrupting is not in place, the light turns on the photo transistor.
Because the resistance of the transistor when turned on is so much lower than the 22K pull-up
resistor, the output is very nearly at ground level. When the optical interruption blocks the light from

45 Protean Logic

FBASIC TICKit 4 Simple Examples

the LED, the transistor turns off and has a high resistance relative to the 22K resistor. The output
then is very nearly +5 vdc.

The following program fragment for the circuit follows. Notice that this is not a complete program
and needs to be integrated into a positioning program, like the ones previously shown, to be a
complete servo system.

G CBAL word shaft_pos ; absolute shaft position
Q. CBAL byte prev_sigb ; previous signal B

FUNC none position_count
LOCAL byte cur_sigs
BEG N
=(cur_sigs, dport_get()) ; read all 8 pins of D port
IF ==(prev_sigb, b_and(cur_sigs, 0y00000100b))
; nho change to count
ELSE
| F prev_sigb
I F b_and(cur_sigs, 0y00000010b)
--(shaft_pos)
ELSE
++(shaft_pos)
ENDI F
ELSE
I F b_and(cur_sigs, 0y00000010b)
++(shaft_pos)
ELSE
--(shaft_pos)
ENDI F
ENDI F
ENDI F

=(prev_sigb, b_and(cur_sigs, 0y00000100b))
ENDFUN

This concludes our discussion on electro-mechanical control. Many other options exist in this arena
from driving solenoids, to driving stepper motors, to using self contained servo mechanisms like RC
servos. Check the release disk and the Protean web site for sample programs and applications notes. If
you are interested in building some of the circuits talked about in this section, Digi-key Corporation
and Jameco Electronics are sources for all parts mentioned in these circuits. Y ou can find their
contact information at the Protean web site.

4.6 Reading and Debouncing Switches

No matter what your project is, asimple user interface is often required. A user interface usually
constists both of away to tell the controller what to do, and away for the controller to tell you what it

Protean Logic 46

4 Simple Examples FBASIC TICKit

isdoing. We have looked at LEDs as a way for the controller to indicate its status, but how do we tell
the controller what to do, aside from changing its program?

The most common answer to this question is a collection of buttons and switches. This can vary from
afew push buttons to accomplish a "wrist watch" type of interface, to afull 84 key ASCII keyboard.

We touched on the concepts relating to switch input in the rotary encoder example. The basic
electrical problem isto make an SPST button (single pole single throw) produce the voltages required
by the digital circuits of the controller. The solution is to use a resistor to either pull up or pull down
the voltage when the switch is open. The next circuit example uses two switches and two LEDs. As
shown in the schematic below, the switch SW1 iswired so that it connects the pin labeled D1 to
ground when it is closed. When SW1 isopen, pin D1 sees +5 volts through resistor R1. R1iscalled a
pull-up resistor because its function is to pull adigital line high when no other component is driving

it low. Conversly, SW2 is connected so that when closed, it connects the TICkit pin labeled D2 to +5.
R2 pulls pin D2 low when the switch is open, so it is called a pull-down resistor. Both SW1 and SW2
are momentary push buttons, which means they connect only while a being pressed.

The program shown below uses the circuit above to implement a meaningless program. When SW1 is
pressed 10 or more times, LED2 lights. LED1 will light every time SW1 is pressed. Button SW?2
resets LED2 if itison and restores the count of button pressesto 0.

47 Protean Logic

FBASIC TICKit 4 Simple Examples

DEF tic62 c
LIB fbasic.lib

G@_CBAL byte press_count 0Ob

FUNC none mai n
BEG N
REP
IF pin_in(pin_dl)
; do nothing the button is not pressed
pi n_hi gh(pin_d6)
ELSE
; button is pressed
pin_l ow pin_d6)
IF <(press_count, 10b)
++(press_count)
ELSE
pin_low(pin_d7)
ENDI F
ENDI F

IF pin_in(pin_d2)
=(press_count, Ob)
pi n_hi gh(pin_d7)
ENDI F

; try putting the following in the programl ater
; delay(20)

ENDFUN

When you type in this program, leave the delay(20) line commented out, and execute the program.
Y ou will find the results unsatisfactory. The 10 count LED seems to light too soon, sometimes it
lights on the first key press. Why is this?

The reason has to do with the physical nature of a switch. Most switches bounce their contacts due to
the mechanical properties of the switch. This means that for a few milliseconds, the contacts are
closing and opening for a random number of times. This TICkit processor is fast enough to catch
these very fast bounces which look like repeated key presses. Now put the delay(20) line in the
program by removing the ';". The delay of 20 milliseconds makes the program insensitive to key
bounce and thus it works just as we expect. Often, there is no need for an extra delay when
debouncing keys in a program. Many times there is enough delay associated with the main control
function too make the key scanning insensitive to key bounce.

Our next two switch examples involve scanned key matrixt may seem like alot of added complexity
to scan amatrix of keys when compared to the simplicity of running each switch to an 1/0O line on the
processor. In fact it is more complex, but it uses fewer 1/0O lines as the number of keys grows, and it

Protean Logic 48

4 Simple Examples FBASIC TICKit

requires fewer steps to determine if any keys are pressed. This can save processing time because
keyboards spend most of their time with no keys pressed.

MOD1
'|;6EH64C %0
Rew 0 SWI SE SL3 L4 e ' nefg reven
ROCO ROCL RoCz ROC3 2lhe ne 2 x R1
s 35 e &5 3 Reset 1722 22K
—O0 O —Q0 O —0 O —0 O 4 37
Row 1 El &m P73 R2
SW5 SW6 SW7 sws 6 3 B¢
RICO RiC1 RiC2 RIC3 >[EEpur D4rm
i 1 i L EEclk = VW
oo oo L 50 L o0 8 wo 33 |
Row 2 0 EEckta En 22K
SW9 SWI0 SWil swiz YW —
R2C0 R2CL R2C2 R2C3 u 30
1 1 1 1 7] 35 <+5 Vdc R4
L 55 L 55 L 55 L 505 = 22 22K
= Ground —W-
Row 3 SWI3 SWi4 SWIS SWi6 14 27
R3CO R3CL R3C2 303 15]
16
—0 O —0 O —0 O 11
18]
19]
Col 0 Col 1 Col 2 Col 3 20

Notice in the first diagram that each key connects a unique combination or row and column wires. It
is the combination of row and column that allow the microcontroller to determine which key is
pressed. The number of rows or columns may change in different keypads, but the basic idea remains
the same. Y our program needs to determine the exact meaning of each key. Some keys may produce
specific actions, other keys may be converted to ASCII characters for display or for use as data.

Thefirst circuit uses a 16 key matrix arranged as 4 rows of 4 columns. We bring one row of the four
low to seeif any keys are pressed on that row. The four column inputs are then read to see if there are
any lines low, if so, the corresponding key is pressed. It isimportant that only one row output be low
at atimeto correctly identify asingle key press. The column inputs are all tied high with pull-up
resistors to make the inputs high when no key is pressed. If appropriate, however, the program could
make all row outputs low and read the column inputs. If all the column inputs are still high, none of
the keys are pressed. This can be a useful way to determine if program time needs to be devoted to
keyboard scanning. The following program demonstrates the technique used to scan a key matrix
directly.

49 Protean Logic

FBASIC TICKit 4 Simple Examples

DEF tic62 c
LIB fbasic.lib

G@_CBAL byte scan_row 0y11111110b
G@_CBAL byte scan_col 0y00000001b
G@_CBAL byte scan_nunber 0Ob

FUNC none mai n
BEG N
dtris_set(0Oy00001111b)
REP
dport_set(scan_row)
delay(1)
I F b_and(dport_get(), scan_col)
; no key is down go to next scan
++(scan_nunber)
I F ==(scan_col, 0y00001000b)
=(scan_col, 0y00000001b)
| F ==(scan_row, 0y11110111b)
=(scan_row, 0Oy11111110b)
ELSE
=(scan_row, <<(scan_row))
++(scan_row)
ENDI F
ELSE
=(scan_col, <<(scan_col))
ENDI F
ELSE
; key is pressed
con_out (scan_nunber)
REP
del ay(10)
UNTIL b_and(dport_get(), scan_col)
ENDI F
LocP
ENDFUN

There are only afew tricks to key scanning. The first isto allow time between when you write the row
scan out and when you read the scan result in. The second isto make sure that all keys are released
after akey pressis detected, before you detect the next key press. If you do not do this, multiple keys
depressed accidentally can lead to completely wrong interpretations about key presses. If you need
multiple keys to be pressed simultaneously, like a shift or "alt" key, put all those keys on a seperate
row. You may even wish to put diodes on these keys.

This key scanning circuit also uses afew CMOS logic I€(integrated circuit). Thisisto illustrate the
use of such circuits and how they can save microcontroller I/O. This circuit can scan up to 64 SPST

Protean Logic 50

4 Simple Examples FBASIC TICKit

normally open switches, and uses only 7 1/O lines.

——

MOD1 ut
T62H64C 74HC138
4 nc. nc.| 40 1 Do 16
3] Reset D7 % s Suiten Mot +
< B e ch Matrix S Vdc
s[ra Dérsg 12
={Special DS
6 I35 1
7 34 ‘os|10
: : sl
9 32 u3
10 31 I 8 x 22K resistors
1 30
3 .
28
27
26
25

u2

I_ 7;tH0151 ©
I3 Veeh=—
12 M
i B3
10 612
Q dm
o~ Dorig
/En Dfg

Ground Gnd D2 |
DEF tic62_c

LIB fbasic.lib

G CBAL byte key val ue
G@_CBAL byte ascii_val ue ob

FUNC byt e key_| ookup
PARAM byt e key_in
BEG N
=(exit_value, '?")
IF <(key_in, 10b)
=(exit_value, +(key_in, '0"))

ELSE
IF <(key_in, 36b)
=(exit_value, +(-(key_in, 10b), 'A))
ENDI F
ENDI F
ENDFUN

51 Protean Logic

FBASIC TICKit 4 Simple Examples

FUNC none mai n

BEG N
dtris_set(0y11000000b)
rs_paramset(debug_pin)

REP
=(key_value, 0b)
=(ascii_value, 0b)
REP
dport _set (key_val ue)
delay(1)
IF pin_in(pin_d7)
| F ==(ascii_value, 0Ob)
=(ascii_value, key_lookup(key_value))
con_out _char(ascii_value)
ENDI F
del ay(10)
ELSE
++(key_val ue)
ENDI F
UNTI L ==(key_val ue, 64b)
LocP
ENDFUN

The program above is elementary, but shows how to get from key scan numbersto ASCII output.

4.7 Using Protean’'s |1 2C Xtender | C for more resources

A common problem encountered when designing controller applications based on single chip
controllersisthe lack of I/O or other controller resources. To meet this demand for additional
capabilities, atrend has developed toward serially connected peripheral 1€£0ne example of thisis
Protean's 12C Xtender IC This device is a specially programmed IC that responds to commands over
its Inter-Integrated Circuit (I1C or 12C) bus. This bus connects to a host processor using only two
wires. If a TICkit is the host, the connection can use the EEprom bus wires leaving al 16 of the
TICkits general purpose 1/0 lines available. Up to 8 or more Xtenders can be connected to a single
host via these two lines.

A single Xtender I1C gives the system the following hardware resources. 2 CCP 1/O pins, a 32 bit
real-time seconds counter, 3 time bases, a unipolar stepper motor controller, 128 bytes of RAM, a
buffered RS232 port, a 16 bit counter, 4 100-Hz PWMutputs, and 5 8-bit A/D channels.

A sample connection to an Xtender is shown below. The 12Cclk and I2Cdata lines form the logical
connection. In addition to these lines, the /IRQ line, and /RES of the Xtender are connected to the
/IRQ, and EEpwr of TICKkit respectively. A sampling of 1/0O components are connected to the Xtender
in the diagram to demonstrate the A/D, PWM 1 (CCP1), button input, general purpose output, 100 Hz
PWM and time base outputs.

Protean Logic 52

4 Simple Examples FBASIC TICKit

R Ut MOD1
>1<73H—10 a T16EH64C .

§ RS § 2 ? nc. Y nc| 3—9

22K |_> 31AN e ncf3g

G GPS Z|Reset D715

sAne GP4 =|7Ira D6[3g

D3 D2 D1 g |AN3/vrefGP3 & |Speciat S35

LED LED LED >/1Ra GPa (22 >{EEpur 422

%1 SN GP1 lﬁ < EEClk D32

19.66 5] Vss GPO 50 3 Tmr0 D2 35

— 0} So]osc Vdd IT To|EEdate DifeE

1 osca Vss 18 1 Gnd DO'int 30

1L cal ECI@. RxD Iz EDSCE Vdd 29—

sl R4 R3 R2 12pf T 1epFT BfPWM2 Txo e 3]A0TrL Gnd2

Test 330 330 330 14 PWM1 X10 5] Al A7'DL |55
1 —1{I2CCLK I2CDAT 51 A2'ccp A6'RW
(o, I 6] A3'Iclk AS
Zne Ad'Idat

Y i
% nc. n.C,|
n.C. NG|

In the program that follows, every press of SW1 causes aread from the RTC seconds count and a read
of A/D channel 1. Y ou can vary the input to the A/D channel by changing the position of R1. To

make the operation of the A/D clearer, you can use a multi-turn version of resistor R1. LED D3
follows the status of SW1 except that it inverted to demonstrate TICkit processing. LED D2 shows the
effects of the 100 Hz PWM. LED D1 shows the effects of the PWM 1 output which is a hardware
generated, higher frequency pwm. LED D1 and D2 bright and dim out of phase with each other so
that while one gets brighter, the other gets dimmer.

There are many more things that the Xtender can do and programming the Xtender is a subject in
and of itself, but this example shows how simple register write and reads accomplish control of the
Xtender. Communication with the Xtender takes place at the same speed as communication with the
EEprom on the TICkit (400 Kbps) so it takes commands very quickly.

Commands for the Xtender are formed from constants contained in the Xtender's library. Use the'|
vertical bar character to combine the device number with the specific command. This method keeps
the code very clean and readable.

DEF tic62 c
LIB fbasic.lib

LIB xtn73h.lib

G CBAL byte duty tenp Ob ; duty cycle for D1 and D2

G CBAL byte button_last 0Ob ; last status of button

G CBAL long tinme_tenp ; used to build up the seconds count
G CBAL byte tenp_val ; tenporary value for reading/witing

53 Protean Logic

FBASIC TICKit 4 Simple Examples

FUNC none nain

BEG N
del ay(500) ; let Xtender get out of power up reset
; initialize the Xtender
IF ==(i2c_read(xtn_devO | xtn_reset), 8b)

this is a version H Xt ender

ENDI F

i2c_wite(xtn_devO
i2c_wite(xtn_devO
i2c_wite(xtn_devO
i2c_wite(xtn_devO
i2c_wite(xtn_devO
i2c_wite(xtn_devO
i2c_wite(xtn_devO

xtn_pi ns_out, Oy00000011b)
xtn_pins_in, Oy00000100b)

xtn_gp_cont, xtn_pwre 0)

xtn_ad_con, xtn_ad_pw | xtn_ad_chanl)
Xxtn_tnmr2_con, xtn_tnr2_en)
xtn_tnr2_per, 255b)

xtn_ccpl_con, xtn_ccpl_pwm)

REP
IF b_and(i2c_read(xtn_devO | xtn_pins), 0y00000100b)
=(button_last, Ob) ; button is not pressed
i2c_wite(i2c_devO | xtn_pins_| ow(0y00000010b)
ELSE

; button is pressed

i2c_wite(i2c_devO | xtn_pins_high(0y00000010b)

I F button_ | ast
; get real tine seconds count and A/ D val ue
=(tenp_val, i2c_read(xtn_devO | xtn_clk tic))
; above captures 32 bit count
=(tenp_val, i2c_read(xtn_dev0 | xtn_clk cnt3))
=(tinme_tenp, to_long(tenp_val))
=(tenp_val, i2c_read(xtn_devO | xnt_clk cnt2))
=(time_tenp, +(*(time_tenp, 256b), tenp_val))
=(tenp_val, i2c_read(xtn_devO | xnt_clk cntl))
=(time_tenp, +(*(time_tenp, 256b), tenp_val))
=(tenp_val, i2c_read(xtn_devO | xnt_clk cntO))
=(time_tenp, +(*(time_tenp, 256b), tenp_val))
=(tenp_val, i2c_read(xtn_devO | xtn_ad reg))

con_string("Tine at press: ")
con_out(time_tenp)
con_string(" Analog Level: ")

con_out (tenp_val)
con_string("\r\I")
ENDI F

Protean Logic 54

4 Simple Examples FBASIC TICKit

=(button_last, 255b)
ENDI F

del ay(10)
; deal with the PW&
i2c_wite(xtn_devO | xtn_ccpl |ow, duty tenp)
i2c_wite(xtn_devO | xtn_ccpl_high, 0Ob)
i2c_wite(xtn_devO | xtn_pwmO, com(duty_tenp))
++(duty_tenp)
LocP
ENDFUN

4.8 Connecting with Other Resourcesvia 12C

The previous example demonstrated how a TICkit can communicate to an Xtender IC viathe TICkit's
built in 12C interface. There are many manufacturers of 12C compatible products and not all of them
use protocols which are compatible with the TICkit's built in read and write formats. This example
deals with one such part. This example connects a TICKkit to 8 Dallas DS1621 temperature sensing |C
viatwo TICkit general purpose 1/O pins controlled by a TICkit 12C simulatingbrary. This simulated
I2C is not nearly as fast as the protocols built into the TICkit, but it will accomplish the
communications required fairly quickly, certainly as fast as required by most applications. This
program actually implements a complete on-demand temperature acquisition system. A partial
schematic for this circuit is shown below. An actual application would probably have additional
circuitry connected to the DS162 ICs.

MODL
T62H62C

us ug uz usg
DS1621 DS1621 DS1621 DS1621

L fSda I Vol ——fSds "\~ Vaalo ——fSda - Vaal2 —fSde Va2
E 7 7 7 E 7
Zsct z aafE—t z E a2
4Toui: Al s 11 —|Tout AL 5 1] =3[Tout Al 5 —: Tout Al 5
Gna a2} nd a2) Gna a2) Gnd a2)

AMA

e

q
l81621

1 3

S. S.

H Vdd L —T—>5]Sde Vdd S 1 Sclo. Vdd LS —T—>5|Sda Vad S

2 k4 7 2| 2 2 7.

SScl AD| 3 y Scl Al 3 3 Scl Are = Sct A0 A

4Tr.aut Al 5 —]Tout AL 5 3 Tout Al 5 —: Tout Al 5
Gnd A2] Gnd A2 Gnd A2 Gnd A2

Notice that the two lines used for the 12C bus are pulled high. Thisis required by the I12C protocol
because multiple sources can drive both the clock and data lines. Also notice how the pins AO, A1,
and A2 on each DS1621 are strapped for a different address. Thisis how each IC knows which 12C
address to respond to. The ‘A’ pins allow the designer to specify 3 of the 7 12C address pins. The other
four are hard coded by the manufacturer of the IC. Some ICsinternally specify all 7 address lines and
must be ordered with different address (like the Xtender) if more than one will be used on an 12C bus.

55 Protean Logic

n
-
(=~
(2
44
o
n
-
oc
2
o
n
[
uc

)5 (58 [5) 6] E|R)E

FBASIC TICKit 4 Simple Examples

The following program is relatively complex for an example. It shows how defines can be used in
conjunction with a pre-written library to customize the library for the program. This was done with
sim_i2c.lib file to specify which pins to use. We also use the DEF directive to define which pin to
communicate with the PC or terminal. In this example, we can use the download socket on the TICkit
modul e with the download cable, except that we use aterminal program like WINTERM instead of
the download software. This just makes demonstrating easier. We leave it to the reader to examine the
sim_i2c.lib file to see how this all works.

; Programto read the 1621 on command and return the value to a PC
; via a serial port. Sinulated |2C routines using G pins are

; used for this routine because the 1621's protocols are too

; conplex for the i2c_read and i2c_wite functions.

DEF tic62_a

LIB fbasic.lib

DEF si2c_data pin_al ; these are the pins to use for 12C

DEF si2c_clk pin_a2

LIBsimi2c.lib ; this libarary is un-docunmented in man.

; but is contained on the rel ease di sk.

; The 1621 has three pins for strapping an |2C address.
; This nmeans up to 8 1621 devices can exist on the |2C bus
; and be addressed i ndependently.

; The defines bel ow gi ve the addresses for the 8 devices.
; If aread is to be performed, the Isb of the address nust be set.

DEF DS1621_devO 0xAOb
DEF DS1621_devl 0xA2b
DEF DS1621_dev2 OxAdb
DEF DS1621_dev3 0xA6b
DEF DS1621_dev4 0xA8b
DEF DS1621_dev5 OxAAb
DEF DS1621_dev6 0xACh
DEF DS1621_dev7 OxAEDb

Protean Logic 56

4 Simple Examples FBASIC TICKit

The 1621 has a fairly
Fol I owi ng the typica

el aborat e comrand system
| 2C devi ce address/control byte,
is used to informthe 1621 of the

nature of the data transfer. The comrands and associ at ed

; an 8 bit comrand byte
: data are |listed bel ow

DEF DS1621_t enp OxAADb
DEF DS1621_t high OxAlb

DEF DS1621_t |ow OxA2b

DEF DS1621 _config OxACh
DEF DS1621C done 0y100

DEF DS1612C t hf Oy010

DEF DS1621C thl Oy001

DEF DS1621C_NvB Oy000

This comrand reads the tenperature of the
| ast conversion. The 1621 will send 2
bytes(16 bits) unless a stop bit is sent
after the first byte. The second byte only
has information in bit 7 because the 1621
only converts 9 bits of data.

; This read/wite 16bit register is used
; to control the Tout pin of the 1621

; This is the high value used in

; conparisons with actual tenp reading.

; If the actual tenperature exceeds this
; value, Tout is driven high

This read/wite 16bit register is used

to control the Tout pin of the 1621

This is the | ow val ue used in conparisons
with actual tenp reading. If the actual
tenperature is less than this val ue,

Tout is driven low This creates a
hysterisis region to prevent critica
oscillations around a single tenperature
set poi nt .

; This read/wite 8 bit register configures
; the 1621 for operation. The bits bel ow
; explain the config options.

00000b ; 1= conversion finished.

00000b ; 1= The devi ce has exceeded the
t_high value. This bit is only
reset by witing the config
register. This bit is unaffected

by the tenp falling below TH or TL
1= The device tenp has fallen bel ow
the t _low value. This bit is only
reset by witing O to it in the
config register. This bit is not
affected by the tenp exceeding TL
or TH

1= 1621 is busy witing data to the
EEprom Values witten to th or tl

00000b

10000b

57

Protean Logic

FBASIC TICKit 4 Simple Examples

; are stored in non volatile nmenory
; and wites can require up to 10 ns.
DEF DS1621C pol Oy00000010b ; Qutput polarity for Tout. 1= a high
; 1S Vdd.
DEF DS1621C si ngl e 0Oy00000001b ; 1= do a single conversion when
; start is commanded. 0= do
; continuous conversion when
; start is comranded.
DEF DS1621_count OxA8b ; This 8bit register holds the count used
; for tenp conversion. This read only
; register can be used for increased
; precision (up to 16bit)
DEF DS1621 slope OxA9b ; This 7bit register holds the slope count
; used for tenp conversion. This read only
; register can be used with the count
; register to calculate a nmore precise
; tenmperature (up to 16 bit)
DEF DS1621 start OxEEb ; Awite to this register starts
; conversions. The config register
; determins if a single conversion
; takes place or if continuous conversions
; will follow A bit of the config register
; indicates when conversion is conplete.
; Awite to this register halts continuous
; conversion node. The current conversion
; Will finish then the 1621 will remain
; idle until the next start comrand.

DEF DS1621_stop 0x22b

DEF pc_serial pin_a7 ; this is the pin to use to comunicate to PC

Q. CBAL byte rs_command ; this is the command received fromPC
G CBAL byte err_val ; error on rs receive
G_CBAL byte dev_addr ; conmputed |12C address for 1621
Q. CBAL byte config read ; value of configuration register
; as read fromthe specified 1621
G CBAL word tenp_result ; 16 bit result as read from 1621
ALI AS byte tenp_high tenp_result 1b ; upper byte of result
ALIAS byte tenp_low tenp_result Ob ; lower byte of result

G CBAL byte trash ; dummy vari abl e when nmaki ng pins inputs

FUNCTI ON none rs_word
PARAM word rs_data
LOCAL word pl ace 10000w
LOCAL word num

BEG N

=(num rs_data)
REPEAT

Protean Logic 58

4 Simple Examples FBASIC TICKit

rs_send(+("0, trunc_byte(/(num place))))
=(num % num place))
=(place, /(place, 10b))

UNTIL ==(place, 1b)

rs_send(+('0', trunc_byte(num)))
ENDFUN

FUNC none si2c_comm ; function to start nessage and send comand
PARAM byt e addr
PARAM byt e comm
LOCAL byte trash
BEG N
REP
si2c_start()
| F si2c_wbyte(addr)
STCP
ENDI F

si 2c_stop()
LocP

=(trash, si2c_wbyte(comm))
ENDFUN

FUNC none mai n

BEG N
rs_paramset(rs_invert | rs_9600 | pc_serial)
pi n_hi gh(si2c_data)
pi n_high(si2c_clk)

configure 1621 for single conversion on comrand
si 2c_comr(ds1621 devO, ds1621 config)
=(trash, si2c_wbyte(dsl1621lc_single))
si 2c_stop()

si 2c_comm(ds1621 devl, dsl1621 config)
=(trash, si2c_wbyte(dsl1621lc_single))
si 2c_stop()

si 2c_comr(ds1621 dev2, dsl1621 config)
(trash, si2c_woyte(ds1621c_single))
i 2c_stop()

n

si 2c_comr(ds1621 dev3, dsl1621 config)
(trash, si2c_wbyte(dsl1621c_single))
si 2c_stop()

59 Protean Logic

FBASIC TICKit

4 Simple Examples

si 2c_comn(ds1621 dev4, dsl1621 config)
=(trash, si2c_wbyte(dsl1621lc_single))
si 2c_stop()

si 2c_comm(ds1621 dev5, ds1621 config)
=(trash, si2c_wbyte(dsl1621lc_single))
si 2c_stop()

si 2c_comn(ds1621 dev6, dsl1621 config)
=(trash, si2c_wbyte(dsl1621lc_single))
si 2c_stop()

si 2c_comr(ds1621 dev7, dsl1621 config)
=(trash, si2c_wbyte(dsl1l621lc_single))
si 2c_stop()

REP

wait for a conmmand from PC (ignore bogus val ues)

=(rs_conmand,
IF err_val
ELSE

I F and(>=(rs_comrand,

valid comrand cal c |12c address and get

=(dev_addr, +(OxAOb,
si 2c_comn(dev_addr,

repeatedly read config unt

si 2c_comn(dev_addr,

si 2c_stop()

si2c_start()

=(trash,
~ 0y00000001b)))

=(config_read,

si 2c_stop()

rs_receive(Ob, Ob, err_va

si 2c_wbyte(b_or(dev_addr,

))

"A), <=(rs_command, 'H))
readi ngs
*(2b, -(rs_command, 'A))))

ds1621 start)

il conversion is done

ds1621 config)

si2c_rbyte(0Ob))

UNTIL b_and(config_read, dsl1621c_done)

now read the conversion results

si 2c_comn(dev_addr,
si 2c_stop()
si2c_start()
=(trash, si2c_woyte(b_or(

ds1621 tenp)

dev_addr, 0y00000001b)))

=(tenp_high, si2c_rbyte(Oxffb))
=(tenp_low, si2c_rbyte(Ob))
si 2c_stop()

now conpute result into a

nornmal i zed 16 bit nunber

and send result to PCwith a return at the end.

Protean Logic

60

4 Simple Examples FBASIC TICKit

=(tenp_result, /(tenmp_result, 128b))
rs_word(tenp_result)
rs_send("\r')
ENDI F
ENDI F
LocP
ENDFUN

4.9 Using a 3-wire interface to control tons of LEDs

In the last examples, we used the 12C bus to communicate to peripheral ICs. The 12C busis
sometimes called the 2-wire bus. In this example we will use a 3-wire buanother serial standard, to
communicate with aMAXIM IC designed for driving multiplexed numeric LED displays. TheIC is
the MAX72198-Digit LED Display Driver. This IC drives amatrix of LEDs so that 256 individual
LEDs can be driven from a single 24 pin IC. The magic of this technique is called multiplexing (time
multiplexing to be exact). This means that at any given point of time, only 8 LEDs are being driven,
but each 8 LEDs is driven in quick succession over time. Our eyes interpret this blur as the desired
pattern; all LEDs which received any drive appear to be on continuously. Thisis similar to our first
example where two LEDs blinked alternately, when there was no delay in the loop, both LEDs
appeared to be on continuously. ThisIC is called adigit driver because 7 segment LED digits contain
8 LEDs (7 segments and a decimal point) that share a common cathode or anode. By connecting all
the same segments together and calling them rows, and using each of the 8 digits common cathodes
at columns, an 8 x 8 matrix of diodesis created. If you just want to control LEDs and not digits, you
can electrically arrange your diodes in groups of 8 that share a common cathode. This has been done
often for Christmas displays. The circuit for this example is shown below. There are no real surprises
here, multiple 7219s can be daisy chained for more LED drivers yet. The program simply lowers the
"load /CS" line, shifts 16 bits of data into the Din pin using the clk pin, and the communication is
complete. A resistor is used with the Iset pin to Vdd. This sets the maximum drive for any segment

|F B
8 x 8 LED array G

LEDs In row share common cathode |
E

Descrete LEDs or 8 Digits

= DP

The program for interfacing to the 7219 is also elementary. Each communication sends 16 bits which
is comprised of 8 data bits and 4 bits of register address. The remaining 4 bits are unused. The 16 bits

61 Protean Logic

FBASIC TICKit 4 Simple Examples

are sequentially shifted out the D2 pin and clocked into the 7219 using the D3 pin. The 16th bit shifts
out first and each bit is latched in on the rising edge of clk. A subroutine takes care of shifting out the
16 bits. DEF statements define constants used to refer to each of the registersin the 7219. The
program simply lights every LED in each row then every LED in each column in succession.

DEF tic62 c
LIB fbasic.lib

DEF nmax7219_data pin_d2
DEF max7219_cl k pin_dl
DEF nmax7219 | oad pi n_d3

DEF nmax7219_di g0 0x0100w
DEF nmax7219_di g1 0x0200w
DEF nmax7219_di g2 0x0300w
DEF nmax7219_di g3 0x0400w
DEF nmax7219_di g4 0x0500w
DEF nmax7219_di g5 0x0600w
DEF nmax7219_di g6 0x0700w
DEF nmax7219_di g7 0x0800w
DEF max7219 decode 0x0900w
DEF max7219 i ntens Ox0A00w
DEF nmax7219 |limt 0x0BOOw
DEF max7219 shut dn 0x0C00w
DEF nmax7219_test OxOFOOw

GLCBAL word cur_row
G CBAL byte cur_col

Protean Logic 62

4 Simple Examples

FBASIC TICKit

FUNC none max7219 send
PARAM wor d max_conm
PARAM byt e nmax_dat a
LOCAL word max_result
LOCAL byte bit_counter 16b
BEG N
=(max_result, +(max_comm max_data))
pi n_l ow(max7219 clk)
pi n_l ow(nmax7219 | oad)
REP
IF b_and(max_result, 0x8000w)
pi n_hi gh(max7219 data)
ELSE
pi n_l ow nax7219 data)
ENDI F

pi n_hi gh(nax7219 cl k)

--(bit_counter)

pi n_l ow(nmax7219 cl k
UNTIL ==(bit_counter, Ob)

pi n_hi gh(max7219 | oad)
ENDFUN

63

Protean Logic

FBASIC TICKit

4 Simple Examples

FUNC none mai n
BEGA N

; start by initializing the display
max7219_send(nmax7219_decode, 0y00000000b)
max7219_send(nmax7219 i ntens,
max7219_send(nmax7219 limt,
max7219_send(max7219_shut dn,
max7219_send(max7219 test,

del ay(500) ;

max7219_send(max7219 test,

REP

; test rows independently
=(cur_row, max7219 dig0)

REP

max7219_send(cur_row, 0y11111111b)

del ay(250)

max7219_send(cur_row, 0y00000000b)

Oy00001111b)
Oy00000111b)
Oy00000001b)
Oy00000001b) ;
one hal f second of LED test
Oy00000000b) ;

=(cur_row, +(cur_row, 0x0100w))
UNTIL ==(cur_row, nmax7219 dig7)

; test columns independently

=(cur_col

REP
max7219_send(
max7219_send(
max7219_send(
max7219_send(
max7219_send(
max7219_send(
max7219_send(
max7219_send(
del ay(250)
max7219_send(
max7219_send(
max7219_send(
max7219_send(
max7219_send(
max7219_send(
max7219_send(
max7219_send(

=(cur_col,

UNTIL ==(cur_col,

LOCP
ENDFUN

0y00000001b)

max7219_di go,
max7219_di g1,
max7219_di g2,
max7219_di g3,
max7219_di g4,
max7219_di g5,
max7219_di g6,
max7219_di g7,

max7219_di go,
max7219_di g1,
max7219_di g2,
max7219_di g3,
max7219_di g4,
max7219_di g5,
max7219_di g6,
max7219_di g7,

<(cur_col))

ob)

cur _col
cur_col
cur_col
cur_col
cur_col
cur_col
cur_col
cur_col

clolololooloNe)
COOOTOOTOTUTT
— e e

; numeric decode

; full brightness

all rows (digits) on
; normal operation
test in progress

no test in progress

: All 8 LEDs on

; wait 1/4 second
: all 8 LEDs off
;. next row

)
)
)
)
)
)
)
) LEDs

; turn of col

turn off col LEDs

Protean Logic

64

4 Simple Examples FBASIC TICKit

4.10 Using the Bus Routinesto Control an LCD module

The example for controlling LEDs is similar to this example in that the goal is to display visual
information to the user of the application. In this example we are connecting the TICkit 62 to an LCD
module based on the popular Hitachi 4478@hip set. Most of the LCD alpha-numeric displays on the
market use this chip set and it has become the dominant defacto standard for displays up to 4 lines by
40 characters. These modules are usually available for $10 or less from surplus outlets like B.G.
Micro.

MOD1 MOD2

T162H64C LCD Optrex DMC20434

LN e W e £} e

1 i nolze I LCD Modlule ¢ ulA
S ne3g I_: Vdd 74HC00
—{/Reset D7 — Vdisp Device

: 622 : A Enabl /RD
5]7Irq Déf3g 5 |RSO LED+ [~ nable

—={Special D5 R/W LED-}~ (A3,A4,AS)

6 35 6

? EEpwr Dafa4 - E

—EEclk D3 | =100 SEL—

8 33 8

5T a2 1

10] EEdata DL a1 o] D2

] Gnd DO%Int 30 il 03 JWR
EDSCE Vdd 29 12 D4

1 A0'Tmr1 Gnd = 5

14] Al A7'DL 14 D6

g A2'ccp A6'RW| D7

6] A3'Iclk AS

w|ne A4'Idat

=inc EE ——+35 Vdc

B ne|22 RAW (A6 >

19] "~ .

20| ne L <Ground

These modules are available with special electronics made by Scott Edwards Electronics and others
which allow them to be interfaced serially. This example does not use any additional electronics and
interfaces to the TICkit viaa 4 bit serial bus connection. The direct connection is a more versatile in
that it allows reading of the modules memory as well as writing to it. Thisis handy for scrolling and
other effects. These modules can be connected by either a4 bit or an 8 bit bus, but to conserve I/0O we
sacrifice some speed of bus transfer to retain pins DO through D3 for other uses. The circuit for this
example is shown above.

The key to this type of module is understanding its internal archetecture and command format. We
will discuss that next, but first we need to discuss the TICkit bus emulation routines. There are three
routines available in the TICkit 62 for using the general purpose pinsin a bus simulation. Asyou
might imagine, the D-pins are used for the data lines of the bus, and the A pins are used for address
lines. The function buss_setup) is used to tell the TICkit which of the address lines will be used for
bus functions and which are free for general purpose use. The buss_setup() function also specifies
which data lines are used, either all 8 pins or only the top 4 are used by the bus simulation. An
additional option is available, if only 4 bits of datalines are used. That option is a single or double
nibble. The LCD module can use a 4 bit double nibble bus method instead of an 8 bit bus to transfer 8
bits worth of data.

The bus simulation can only use address lines 0 through 5 for actual address lines, pin A6 isused asa
Read/Write control line and pin A7 isreserved for download purposes. There is also a subtle
difference between pins A0-A2 and pins A3-A5. When the busisidle or between operations, all the
address lines go to zero. To prevent false writes or reads to multiple registersin a single device, pins

65 Protean Logic

FBASIC TICKit 4 Simple Examples

A3-A5 go to zeros first. This causes any selected device to become unenabled, then pins AO-A2 can
change with no effect. This method of bus interface is similar to Rockwell's or Motorola's method. It
means that there is a device enable and reading/writing is controlled by a single read/write line. The
other common type of busnterface is the Intel or Zilog method where a seperate line is used for
/write and for /read. These pins can be derived from the select logic and the R/W pin to generate the
desired signals. A logic diagram for this is shown above with this example's schematic.

Now lets take a closer look at the LCD module'slectronics and archetecture. Whether the display is

2 x40 or 4 x 16 or any line-column configuration in between, the internals of the module are the
same. The display memory is organized as one line at addresses x00 to x27 and the second line at
0x40 to 0x67. If the display has 4 lines, the display memory for the first line is split between the first
and third line, while the display memory for the second line is split between the second and forth line.
This makes writing specific display positions and scrolling the display arcane, but it is doable none
the less.

Display RAM Map

1x40, 1st 2x40

1x80, 1st 2x20, 1st 4x20 3rd 4x20
1x16, 1st 2x16, Ist 4x16 3rd 4x16
1x8, 1st 2x8, 1st 4x8 3rd 4x8
00| 01 {02 [03 (04 [0S (06 (07 (08 |09 [0A (OB [OC [OD [OE [OF (10 |41 |12 |13 (14|15 16|17 |18 (19| 1A 1B|IC| 1D | IE| IF (20 (21 |22 |23 (24 |25 (26 (27

40| 41 (42 (43 (44 |45 (46 (47 (48 |49 [4A (4B |4C [4D [4E [4F (S0 [S1 [S2 |53 (54 |55 |56 |57 |58 59 [SA [SB [SC |SD |SE |SF (60 [61 |62 [63 (64 |65 [66 (67

2nd 2x8, 2nd 4x8 4th 4x8

2nd Bx16, 2nd 4x16 4th 4x16

2nd 2x20, 2nd 4x20 4th 4x20

2nd 2x40

In addition to the 160 bytes of display data RAM (DD RAM), there are 64 bytes of user
programmable character generator RAM. If the display is programmed for 5x7 characters, this comes
out to 8 custom characters. If the display is programmed for 5x10 characters, there are only 4 custom
characters available. The table that follows shows the mapping of the character generator RAM (CG
RAM) when in 5x7 character mode.

Only the pattern for two of the eight possible custom characters is shown, but the method should be
clear from these two examples. The two characters are programed for an 'H' and the small letter 'g' to
demonstrate a descender.

Char acter Codes CG RAM addr esses Character Pattern
(as in DD RAM (for programm ng) (as in GG RAV
76543210 76543210 76543210
0000*0O0O 0000O0O0O0O XXX1000 1
00000001 XXX1000 1
00000010 XXX1000 1
00000011 XXX11111

Protean Logic 66

4 Simple Examples

BASIC TICKkit

0001

000

1
000 1

0000

0000*0012

0000O

0000

IRk | OO O Ol Ik Ik

Ol O O] 0| 0| O0|O0|O0|O|O| O| O
Ol Ol O] O] 0| 0O|O|O|O| O| O| O
Ol Ol O] O] 0| O0O|O0O|O|O|O| O| O
Ol O O] 0| 0| 0|O0|O0|O|O| O| O
PR PP FP PP OIO|IOlO
PP PP O OOCO|FR|IKF|FLlPF
PP OO P P OOkl k|l OO
POl P O, OFR Ok Ok O

XX | X| X[X[X|X]| X|X|X|X]|X
XX | X| X[X[X|X] X|X|X|X]|X

There are two addressable registers in a 44780 based module. These are the command register and
dataregister. Asyou would expect, the data register is used to read or write data to the DDRAM or
CGRAM. The control register is less obvious. Reads from the control register return a busy flag in bit
7 and the current address counter (DDRAM pointer) in bits 0 thru 6. The table that follows
summarizes the command structure:

I nstruction Control Data Bits Description
nane RS RW|76543210
O ear Display 0O O 00000O0O012 O ears display and
returns cursor to hone
position (address 00)
Ret urn Hone 0O O 0000001X Pl aces cursor at
address 00. Al so
un-shifts display
Entry Mode 0O O 0000011 S Sets the cursor
novenent direction.
=1 inc, 1=0 dec,
S=0 no shift,
S=1 shift display.
Di splay Control 0O O 00001DCB Turn Display on (D),

Turn Qursor on (O,
Bl ink Qursor on (B).

67

Protean Logic

FBASIC TICKit 4 Simple Examples

Cursor & Display O0OO0O1DRXX | Controls shifting and
Shifting cursor novenent.
D=1 shift displ ay,
D=0 cursor nove,
R=1 shift right,
R=0 shift left.

Interface & 0 0 0O01DLFXX Control s data bus
For mat wi dth and
di splay format.
D=1 8 bit bus,
D=0 4 bit bus,
double lines (L),
Large Font (F)

Set GG RAM 0O O O1AAAAAA Sets the address for
Addr ess CG RAM r eadi ng and
Witing. Subsequent
read and wites to
data register affect
CG RAM content s.

Set DD RAM 0O O 1AAAAAAA Sets the address for
Addr ess DD RAM r eadi ng and
Witing. Subsequent
read and wites to
data register affect
DD RAM cont ent s.

Read St at us 0 1 BAAAAAAA Reads 44780 st at us.
B=busy processi ng,
AAAAAAA = addr ess

count; either DD or GG

RAM addr ess.
Wite Data 1 0 Data to Wite E ther DD or CG data
Read Dat a 1 1 Dat a Read E ther DD or CG data

The program which follows follows a specific sequence of commands to initialize the display. A
specific command write timing pattern is necessary to ensure the display initializes properly.

DEF tic62 c
LIB fbasic.lib

DEF xbuss_mask 0y00100001b ; These are the address |ines used
DEF | cd_data_reg 0y00100001b ; Address of data register
DEF | cd_cont _reg 0y00100000b ; Address of control register

Protean Logic 68

4 Simple Examples FBASIC TICKit

FUNC none lcd init

BEG N
buss_setup(+(xbuss_mask, buss_4bit)) ; setup buss for 4bit
del ay(15) ; wait 15ns
buss_wite(|cd_cont_reg, 0y00110000b)
delay(5)
buss_wite(|cd_cont_reg, 0y00110000b)
delay(1)
buss_wite(|cd_cont_reg, 0y00110000b)
| cd_cont (0y00100000b) ; turn it into 4two

buss_setup(+(xbuss_mask, buss_4two))

| cd_cont (0y00101000b) ; assumes 2 |line 5x7 font

| cd_cont(0Oy00001111b)

| cd_cont (Oy00000001b

| cd_cont (Oy00000110b
ENDFUN

~—

FUNC none | cd _cont _w
PARAM byt e in_val

BEG N
VWH LE >=(buss_read(lcd_cont_reg), Oyl10000000b)
LOCOP ; delay until not busy

buss_ wite(lcd _cont_reg, in_val)
ENDFUN

FUNC none | cd data w
PARAM byt e in_val
BEG N

VWH LE >=(buss_read(lcd_cont_reg), Oyl10000000b)
LOCOP ; delay until not busy

buss wite(lcd data reg, in_val)
ENDFUN

69 Protean Logic

FBASIC TICKit 4 Simple Examples

FUNC none lcd_string
PARAM word in_ptr
LOCAL word tenp_ptr
LOCAL byte tenp_val
BEG N
=(tenp_ptr, in_ptr) ; don't affect calling val ue
=(tenp_val, ee_read(tenp_ptr))
VWH LE tenp_val
| cd_data w(tenmp_val)
++(tenp_ptr)
=(tenp_val, ee read(tenp_ptr))
LocP
ENDFUN

FUNC none | cd_out
PARAM word | cd_data
LOCAL word pl ace 10000w
LOCAL word num
BEG N
=(num Ilcd_data)
REPEAT
lcd _data_ w(+('O, trunc_byte(/(num place))))
=(num 9% num place))
=(place, /(place, 10b))
UNTIL ==(pl ace, O0Ob)
ENDFUN

FUNC none mai n
LOCAL word | count O

BEG N
del ay(500) ; wait for 1/2 second for power to settle
lcd_init()
| cd_cont _wr(0y00000001b) ; Reset the LCD for good measure
lcd_string("Hello World...")
| cd_cont _wr(0y11000000b) ; position to first char on line 2

I cd_string("Loop Count: ")
REP

| cd_cont _w(0Oy11001100b) ; 12th char on line 2
[cd_out(| count)
++(lcount)
LocP
ENDFUN

This program just initializes the display, says "Hello World..." and counts loops on the second line of
the display. A simple program, but a good basis for working with these very versatile LCD modules.
There are additional LCD functions contained on the release disk for you to look over.

Protean Logic 70

4 Simple Examples FBASIC TICKit

4.11 Fixed Point Arithmetic.

It isfairly common to deal with fractional results when designing controllers. Thisisadisplay or
calculation restraint because the units of measure are directly dictated by the sensorsin the controller.
A controller with an LCD screen or other, more elaborate output capabilities should be able to present
datain an expected format. The TICkit 62 does not have a floating point library in its current version,
but it still can display numbers with fractional components.

The TICkit 62 has a signed LONG type number which is a 32 bit integer variable type. This size of
integer can display 9 digits of accuracy.Assume we are dealing with numbers from our sensors which
are no greater than 4096 (12 bit). This number only requires 4 digits to represent its full range. If we
use a LONG type to represent this number during calculation or display, we can scale the meaning of
this number by as much as 100000. In other words, we define one as being 100000 and we display our
numbers with a decimal point 5 places to the left. The number one will display as 1.00000 which is
exactly what you expect.

The key to making this easy is the format versions of the long humeric output functions. There are
three versions of this on the TICkit release disk. Function lcd_fmt() is for displaying formatted longs
on an LCD, function con_fmt() is for displaying formatted longs on the debug console, and function
rs_fmt() isfor displaying formatted longs to an rs232 device. To make clear how these functions work
and how they are used, a copy of the con_fmt function is shown below. The meanings of the format
characters are explained in the source for the function.

; Routine to output a Long Nunmber to the LCD display (Signed)

Meani ngs of format string characters

'$ print a$

", print a .

"# print a nunber (leading zeros will not be printed)

"0" print a nunber (leading zeros will print fromthis digit on)
"X hold a place but to not print the nunber

71 Protean Logic

FBASIC TICKit 4 Simple Examples

FUNCTI ON none con_fm
PARAM | ong i n_dat a ; Data to print
PARAM wor d poi nt er Data fornmat string
LOCAL | ong tenpnum Copy of print data
LOCAL word hpoi nt er Copy of string pointer
LOCAL | ong divisor 1l Di visor , used by routine

LOCAL byte tenpchr ; Data hold variable
LOCAL byte first Ob ; flags register
LOCAL byte tenpdi g ; tenporary digit

BEG N

; this section counts the nunber of digits and determ nes what
; the nost significant digit's divisor will be as a result.
=(tenpnum in_data)
=(hpointer, pointer) ; Store format string start
=(tenpchr, ee_read(hpointer)) ; Read format string
VWH LE tenpchr
|F ==(tenpchr, '#
=(divisor, *(divisor, 10b))
ELSEl F ==(tenpchr, '0'
=(divisor, *(divisor, 10b))
ELSEl F ==(tenpchr, 'X
=(divisor, *(divisor, 10b))
ENDI F
++(hpointer)
=(tenpchr, ee_read(hpointer)) ; Read format string
LocP

; Check for negative: displays sign and
; make nunber positive for conversion
IF <(tenpnum Ob)

con_out_char("-')

=(tenpnum -(Ol, tenpnum))
ENDI F

; Check for overflow of nunmber: If divisor too |arge,
; wite an * to indicate
; Then do conversion on remai ni ng nodul us of divi sor
IF > /(tenpnum divisor), 0Ob)

con_out _char('*')

=(tenpnum 9% tenpnum divisor)) ;
ENDI F

Protean Logic 72

4 Simple Examples FBASIC TICKit

; Begin actual conversion and display |oop here
=(divisor, /(divisor, 10b))
=(hpointer, pointer) ; Store format string start
=(tenpchr, ee_read(hpointer))
VWH LE >=(divisor, 1b)
I|F ==(tenpchr, ".")
con_out _char(tenpchr)
ELSEI F ==(tenpchr, '$')
con_out _char(tenpchr)
ELSEl F ==(tenpchr, 'X
=(tenpnum 9% tenpnum divisor))
=(divisor, /(divisor, 10b))
ELSEI F ==(tenpchr, '0")
=(tenpdig, trunc_byte(/(tenpnum divisor)))
=(tenpdig, +(tenpdig, '0"))
=(first, Oxffb)
con_out _char(tenpdig)
=(tenpnum 9% tenpnum divisor))
=(divisor, /(divisor, 10b))
ELSEI F ==(tenpchr, '#)
=(tenpdig, trunc_byte(/(tenpnum divisor)))
=(tenpdig, +(tenpdig, '0"))
IF <>(tenpdig, '0")
=(first, Oxffb)
ENDI F

IF first
con_out_char(tenpdig)
ENDI F

=(tenpnum 9% tenpnum divisor))
=(divisor, /(divisor, 10b))
ELSE
con_out _char(tenpchr)
ENDI F

++(hpointer)
=(tenpchr, ee_read(hpointer))
LocP
ENDFUN

A typical application for this sort of thing would be to display the output of a 12 bit ratiometric A/D
reading in volts. Rather than show the whole program, only a fragment which relates to this
discussion is shown. The variable ad_in isaword variable that contains the value read for an
LTC129812 bit A/D in a5 volt system. This means that 0 is 0 volts and 4095 is 5 volts and all values
in between are assumed to be linearly related.

73 Protean Logic

FBASIC TICKit 4 Simple Examples

; 12 bits can display three decinal points but needs 4 to
; conpletely hold the nunber. Therefore lets assign one to
; be the value 10000. To produce the nunber of volts from
; the value read we need to divide 5 times the readi ng by
; 4096.

A CBAL | ong conv_result

=(conv_result, *(50000, ad_in))

=(conv_result, /(conv_result, 4096))
con_fm (conv_result, "#. 000X")
con_string(" Volts")

4.12 Using the CCP Input to Measure a Pulse.

The TICkit has a pulse_in function which works very well for measuring pulses provided you know
when they are coming. The TICkit does not need to be doing anything else while it waits for the pulse
to occur. This generally is not the case in the real world. This next application demonstrates how the
CCP output can be used in conjunction with timer1 and some discrete logic to make a very precise
pulse measurement system that measures in background while the TICkit continues its other tasks.
The CCP output is configured for PWM output like in previous examples. This time, however, we are
not as interested in the duty cycle as the period. Lets say we are interested in pulses that are very fast
and we want aresolution of 1 microsecond. The oscillator on a20MHz TI1Ckit produces a period of
0.2 micro seconds. This means we want to divide this by afactor of 5 to produce a period of 1.0 micro
second. Thisis accomplished by loading the Timer2 period register with avalue of 4. The CCP
register is loaded with 2 (for a 50% duty cycle) and the output on the CCP pin will be 1 MHz or have
aperiod of 0.1 us. We then gate this signal with an and gate and some trigger logic which feeds the
Tmrl pin (pin_a0). Now reset the trigger circuit and examine the contents of timerl as soon as it
remains constant at any value other than 0, we have measured a pulse. The contents of timerl isthe

Protean Logic 74

4 Simple Examples

FBASIC TICKit

count of micoseconds the pulse was high. The circuit for this follows:

U2
7;1!-!000

The circuit for gating the time base uses two flip flopéspecial ogic components that hold their state
until reset). The TICkit arms the circuit by bringing pin_a3 low and then high. The next rising edge
on U1-2clk will turn U1-2 on and allow the time base to get through to the input of timerl. As soon
as U1-2 turned on, U1-1is clocked and turns on as well. Because the D input of U1#& connected to

/Q of U1-1, the next pulse on the signal will turn U1-2 off permanently before any of the time base
can be counted. So, at this point, the count in the TICKkit's timer1 represents the amount of time that

the signal was high. The program for this circuit follows:

DEF tic62 c
LIB fbasic.lib

GLCBAL word last_count O
G CBAL byte count _done 0Ob

FUNC none mai n

BEG N
rs_paramset(debug_pin)
pin_low pin_a2)
tnr2_cont_set(tnr2_con_on)
tnr2_period_set(4b)
ccpl_cont _set(ccp_pwm)

; set for a period of 1.0 us

ccpl_reg_set(2w) ; set for approx 50% dutycycl e

; time base is now operational

pin_low pin_a3) ; reset trigger circuit

tmrl reg_set(0)

; clear tinmerl

pi n_hi gh(pin_a3) ; armthe trigger circuit

75

Protean Logic

FBASIC TICKit 4 Simple Examples

; pul se neasurenent circuit is now active
REP

IF <>(last_count, 0)
IF ==(last_count, tnmrl reg _get())
++(count _done)
ENDI F
ENDI F

do what ever during the body of the | oop.
; timng is not critical.
=(last_count, tnrl reg get())

UNTI L count done

con_string("Pulse Wdth =")
con_out (last_count)
con_string("us")

debug_on()

ENDFUN

4.13 Using Timer1to calculate RPM.

Measurement of RPM or the time between repetitive eventsis simple. In the last example, the
timebase could only be counted while the signal input was high and during the first cycle following
the rising edge of that signal. By eliminating one of the AND gates, the time base is counted durring
the entire first cycle following arming. By taking the reciperocal of the time, we have the RPM.
Doing the reciperocal requires a bit of mathematic manipulation, but nothing too hard for the TICKit.
First, the revised circuit:

Protean Logic 76

4 Simple Examples FBASIC TICKit

The following program shows fixed point arithmetic used to scale the results for 1000 RPS (rotations
per second). Realistically, we should slow our time base, but this shows how sensitive this method can
be. We choose a scale where 1000000 represents the number 1.000000. When we divide 1 by the
number of microseconds the result is the number of millions of events that took place in one second.
Due to our scale, we can simply move our imagined decimal point to the right to see how many
thousands of events took place per second.

Use the con_fmt() function detailed earlier to display the scaled results on the debug console. The
result is shown in thousands of rotations per second with 2 decimal places of precision. Examine the
code to see how thisis done:

DEF tic62 c
LIB fbasic.lib

GLCBAL word last_count O
G_CBAL byte count _done 0Ob

FUNC none nain

BEG N
rs_paramset(debug_pin)
pin_low pin_a2)
tnr2_cont_set(tnr2_con_on)

tnr2_period_set(4b) ; set for a period of 1.0 us
ccpl_cont _set(ccp_pwm)

ccpl_reg_set(2w) ; set for approx 50% dutycycl e
; time base is now operational

pin_low pin_a3) ; reset trigger circuit

tmrl reg_set(0) ; clear tinerl

pi n_hi gh(pin_a3) ; armthe trigger circuit

; pul se neasurenent circuit is now active
REP
IF <>(last_count, 0)
IF ==(last_count, tnmrl reg _get())
++(count _done)
ENDI F
ENDI F

; do whatever during the body of the I oop.
; timng is not critical.
=(last_count, tnrl reg get())

UNTI L count done

con_string("Pul se Wdth =")
con_out (last_count)
con_string("us")

77 Protean Logic

FBASIC TICKit 4 Simple Examples

=(rps_result, /(1000000L, last_count))
con_string("Thousands of Rotations Per Second =")
con_fm(rps_result, "####. 00X")

REP

debug_on()
ENDFUN

4.14 Interfacing to RS232 devices.

Another very common use for TICKkit type processorsisto "glue" together various electronic
instruments using RS232 format serial connections. Many such instruments are available as a result
of Marine use of GPS, Compas and LORAN. NEM Atandards for communications as well as serial
interfaces for LCD displays and countless data acquisition instruments, make the RS232 format one
of the most essential controller interfaces.

Even though RS232 is so wide spread, it is a standard which was not initially intended for many of
the uses it now performs. Thisleads to a rather loose interpretation of the signal names and

meanings. Generally, the only standard part of the RS232 standard is the bit timing of the serial data
stream. The voltages, polarities, pin assignments, and connectors all vary by application. Therefore,
when we refer to RS232 in respect to the TICkit, we are refering to the bit timing of the stream. The
TICkit can produce TICKkit output that is either intended for standard RS232 drivers like the MAX 232
or 1489 driver ICs, or it can produce an open drain inverted output that can, in most cases, be
connected directly to RS232 sockets via a resistor.

The following diagrams illustrate RS232 timing and how inverted or non-inverted signals appear on
output pins.

Thit =1 7/ Boud rate e.g a9600 baud, Thit = 104.1 us

2 T S U N N O O O
+5
Non-inverted ST n- 2 X 3 X 4 X 5 X 6 X 7’ / STOP
Ground
+5

'Flou‘t—/ST\ 0X1X2X3X4X5X6X7\STDP

Inverted signal should be pulled low to Gnd or -9 volts

Inverted

There are 5 basic functions associated with serial communications on the TICkit. There are complex
functions are available that build on these functions.

Thefirst functions are the rs_param_set() and rs_param_get() function. These two functions are used
to setup subsequent serial communcations. These functions set the baud rate, pin number for data, and
determine if the stream isinverted or not.

Protean Logic 78

4 Simple Examples FBASIC TICKit

The third function isthe rs_send() function. This function sends the specified byte out using the
format and pin set by the rs_param_set() function. The function, rs_break() can be used to send a byte
with aforced framing error, but thisis seldom required. Thisis used for advanced serial protocols.

The fourth function is the rs_receive() function. This function receives a single byte of specified
format from the specified pin. This function can have atimeout or wait indefinately to receive a byte.
It also returns error information when an error in format is detected in the input stream. A special
control parameter allows a handshake pin to be used in addition to the data stream pin specified with
the rs_param_set() function.

The fifth function, rs_recblock() is similar to the rs_receive() function except that it can receive more
than one byte. This function also has the control parameter and can be instructed to ignore data until
amatching byte or abreak is detected in the input stream. These special conditions can be useful
when creating a network of controllers that are linked by a shared serial line.

For this manual, we are only going to deal with serial transfer to and from a PC. We use a hormal
communications program like WINTERM or PROCOMM to send and receive serial data over a
standard COM port The cable we use is shown below. Also included are the standard pin
assignments for 9 and 25 pin PC connectors.

MOD1L MOD2
T62H64C 44780 LCD
13 25 S|nc n.c.“ i
o) e ncfe } 2 lJag LD Module ¢
O oj/Reset 712 “{vasp A
o —=1/Irq RSO LE]h-K
P O Special RAW LED-|
o CEpur 1o SEL
O —{Tnro D8 oL
o 15]EEckta EE
o g L
12]
O 53 FE] o
o2 0 o iy
o O 5
o) 5 g9 7]
O 18]
O Ty y L<+5 vdc
o, R1 0y y
[o) | 32
O 0O vAvAvAv Ground
o :_CO a5
o) =0
@) O
114 16
Pin Function DB9 DB25
Franme G ound 1
Transnit data (TD) 3 2
Recei ve data (RD) 2 3
Request to Send (RTS) 7 4
Cear to Send (CTS) 8 5
Data Set Ready (DSR 6 6
Signal Gound (SG 5 7
Data Carrier Detect (DCD) 1 8

79 Protean Logic

FBASIC TICKit 4 Simple Examples

Data Ternminal Ready (DTR) 4 20

Ring Indicator (Rl) 9 22

The demonstration program is as simple as the circuit. The program initializes the LCD display then
displays 20 characters it receives with the rs_receive() function. The the rs_send() function is used by
the rs_string() function to send a message to the PC saying, "send a block beginning with 'A™. At this
point, the program uses rs_recblock() to get a block of 10 characters which are prefaced with the
letter 'A". When all 10 characters are received, the string is displayed on the LCD. The processis
repeated indefinately

DEF tic62 c
LIB fbasic.lib

; These defines used by the LCD libraries

DEF xbuss_mask 0y00100001b ; These are the address |ines used
DEF | cd_data_reg 0y00100001b ; Address of data register

DEF | cd_cont _reg 0y00100000b ; Address of control register

LIBlcdinitd.lib
LIB I cdsend.lib
LIB lcdstrin.lib

FUNC none rs_string
PARAM word in_string
PARAM word tenp_ptr
PARAM wor d tenp_chr
BEG N
=(tenp_ptr, in_string)
=(tenp_chr, ee_read(tenp_ptr))
VWH LE tenp_chr
rs_send(tenp_chr)
++(tenp_ptr)
=(tenp_chr, ee read(tenp_ptr))

ENDFUN

Protean Logic 80

4 Simple Examples FBASIC TICKit

FUNC none mai n
LOCAL byte in_count
LOCAL byte tenp_chr
LOCAL byte in_array[10b]

BEG N
del ay(500) ; delay 1/2 second
lcd_init()

rs_paramset(rs_invert | rs_9600 | pin_a3)
=(in_count, 0Ob)
REP
| cd_data_w(rs_receive(Ob, Ob, 0b))
++(in_count)
UNTIL ==(in_count, 20b)

rs_paramset(rs_invert | rs_9600 | pin_al)
rs_string("Send a block beginning with 'A ™)

rs_paramset(rs_invert | rs_9600 | pin_a3)
=(tenp_chr, rs_recblock(Ob, rs_cont_addr, 'A, ~
~in_array[Ob], 10b)

rs_paramset(rs_invert | rs_9600 | pin_al)

rs_string("Block was: ")
=(in_count, 0Ob)
REP

rs_send(in_array[in_count])
++(in_count)
UNTIL ==(in_count, 10b)

reset ()
ENDFUN

The PC's communication program must be set to the following settings: 9600 baud, the com port
number that the cable is plugged into, no handshake, 8 bits, no parity, 1 stop bit. Play with this
program and circuit to get afeel for how things work. Some people may find that when the TICkit
sends data nothing is received by the PC or possibly garbled datais received. Thisis because the
voltages generated by the TICkit are in the range of 0 to 5 volts. True RS232C states that the voltages
should range between +3 and +9 volts for a "space” (low) and -3 to -9 voltsfor a"mark" (high). The
following circuit accomplishes an official interface to a PC. The only program change required for
thiscircuit is to remove the "rs_invert" word from the rs_param_set function calls. The circuit for PC
communication, with conforming driversis shown here.

81 Protean Logic

FBASIC TICKit 4 Simple Examples

MOD2
44780 LCD
13 25 +—Lfora
O i dd LCD Module ¢
O O ‘:‘l‘ @:_
O LED-1=-
o O —{po SELI—
8 1o
D3
O ™
O_
05 =
O
O
O
O
O
O
O
O
© O
O
114

4.15 Using the RSB509 to Receive RS232 in Background.

In the previous example, you may notice that there are times when data sent to the TICkit from the
PC islost or garbled. Thisis not caused by a driver problem like transmission in the other direction.
The cause for this problem is rooted in the fact that the rs_receive() and rs_recblock() functions are
RS232 emulations. This means that there is no internal hardware dedicated to monitoring the input.
The only time the pin is being monitored for RS232 input is while the function(s) is executing.
Therefore, for the time that the program is dealing with a received byte, it is not listening for the next
byte from the sender.

This problem can be solved in one of three ways. The first is to establish a special protocol so that the
PC, or whatever device is sending to the TICkit, transmits only when the TICkit isready. An example
of such a protocol is used by the console functions and the debug program. This works well, but is
often not possible when using existing designs for transmitting. Another exampleisto use the
handshake lines in conjunction with the TICkit's receive functions. Unfortunately, very few RS232
sending devices monitor the handshake lines on a byte by byte basis. They typically assume that the
receiver can take a byte or two more even after the handshake line indicates busy. The only sure way
to receive an asynchronis data stream is to use dedicated receiving hardware.

Protean has created the RSB509 for this purpose. This 8 pin IC works with the TICKit's receive
functions, but buffers received data and only sends to the TICkit when signaled. The circuit for
interfacing to the RSB509 follows. Notice that only one general purpose 1/0 line is used to connect to
the RSB509. The TICkit sends a quick pulse out the interface pin to signal the RSB509 its readiness.
The RSB509 then sends one byte if it has buffered data to send.

Protean Logic 82

4 Simple Examples

FBASIC TICKit

s BB
T >

—+5 Vdc

13 25 2
o0 | :
50 [___;]
R R
o? B B
O VYWV
]
O— ¢
O 0.
[e]
o5 5 of |6 BL,
g O | ,_| vAv‘vAv
e} | 00—
o]
O
o o |—70—
1 14 1 6

The program fragment for thisis shown below. Thisis similar to the previous example except that the
pulse protocol has been included for controlling the RSB509.

LI B rsb509b.1ib

FUNC none mai n
LOCAL byte in_count
LOCAL byte tenp_chr
LOCAL byte in_array[10b]
LOCAL byte in_err

BEG N
del ay(500) ;
lcd_init()

rs_paramset(rs_invert |
pi n_hi gh(pin_a3)

del ay(10)
=(tenp_chr,
rs_send('A
rs_send(rsb509 baudl)
del ay(100)

pin_in(pin_a3))

=(in_count,
REP

ob)

pi n_hi gh(pin_a3)

=(tenp_chr, rs_receive(Ob, Ob,
IFin_err

; no RSB data
ELSE

| cd_data_w (tenp_chr)
++(in_count)
ENDI F

UNTIL ==(in_count, 20b)

rs_9600 |

delay 1/2 second

pin_a3)

end conmand pul se

program RSB509 for an A
program for 9600

give RSB509 0.1 sec to reset

: ask RSB509 for data

in_err))

83

Protean Logic

FBASIC TICKit 4 Simple Examples

pi n_hi gh(pin_a3)

del ay(10)

=(tenp_chr, pin_in(pin_a3)) ; end conmmand pul se

rs_send('A) ; program RSB509 for an A
rs_send(rsb509 baudl | rsb509 _addr) ; programfor 9600

del ay(100) ; give RSB509 0.1 sec to reset

rs_paramset(rs_invert | rs_9600 | pin_al)
rs_string("Send a block beginning with 'A ™)

rs_paramset(rs_invert | rs_9600 | pin_a3)
=(in_count, 0Ob)

REP
pi n_hi gh(pin_a3) ; ask RSB509 for data
=(in_array[in_count], rs_receive(Ob, Ob, in_err))
IFin_err
; no RSB data
ELSE
++(in_count)
ENDI F

UNTIL ==(in_count, 10b)

rs_paramset(rs_invert | rs_9600 | pin_al)

rs_string("Block was: ")
=(in_count, 0Ob)
REP

rs_send(in_array[in_count])
++(in_count)
UNTIL ==(in_count, 10b)

reset ()
ENDFUN

Notice that the rs_recblock function is eliminated and rs_receive() is used in the loop instead. Thisis
because the RSB509 performs the address detection and is, therefore, easier to interface using the byte
by byte method.

4.16 Example Summary

This concludes our examples section of the manual. Thisis the first manual printing to include this
chapter, so there may be errors. Please let Protean know if you find mistakes with the examples given.
All programs and circuits are based on working counterparts, but many examples in this book were
modifyed for simplicity and could contain simplification errors or transcription errors.

Protean Logic 84

4 Simple Examples FBASIC TICKit

Asyou build these examples and design your own circuits keep in mind the following list of
suggestions. It might save you some time, aggravation, and money.

1. Whenever you apply power to a circuit for the first time, verify the power connections with
an ohm meter. Apply power briefly to check for shorts, hot components, or smoke. When you
are confident your circuit is not damaging itself, then power the circuit for extended periods.

2. When you have a design worked out, program all unused general purpose pinsto be outputs.
Or, tie all unused inputs to either ground or +5 vdc. This prevents floating inputs from
oscillating internally and conserves power and reduces heat.

3. When debugging your program, make use of all the debugging tools. This means writing a
stack overflow routine so that the TICkit informs you in some way (A console message or
turning on an LED) that the TICkit's stack has been exceeded. Single step through your
program, or use the debug_on() function in areas of your program that may contain bugs and
trace through them. If an area of problem in your code must run at full speed, wire in extra
LEDs and temporarily modify your code to have it show viathe LEDs what is happening.

4. Develop good revision techniques. This means putting comments at the beginning of your
program file every time you make a modification. Make a copy of your program every time
you start a new series of modifications so you can revert back to the last working version if

clear which modification is the source of the problem.

5. Use the Protean Web site and Email extensively. Thisisthe most economical and effective
way to get support from Protean and the best way to get new ideas and learn about new ways
of solving old problems.

6. If it seems like the TICKit isjust on the edge of being fast enough to accomplish atask,
consider putting some or all of that task into a dedicated peripheral 1C. Often adding a few

dollars of silicon to a project saves tremendous costs in software development and product
support.

We hope these suggestions are helpful to you. Enjoy your TICkit. We always like to hear how our
customers are using our products, so send us an Email about your projects if you get a chance.

85 Protean Logic

FBASIC TICKit 5 FBASIC Keywords
5 FBASIC Keywords

5.1 Keywords Are they commands or what?

Keywords are words that are the basic building blocks of alanguage. Unlike variables or function
names, they cannot be renamed or created by the programmer. This means they are the quintessential
character of the language.

In FBASIC, keywords are used to control compiling of source files, define other data symbols, define
procedure symbols, and to explain the flow control of the finished program. These groupings are
referred to as compile directives, definition or declaration directives, and flow control directives.
Statements, Commands and Directives are all synonymous termsin FBASIC. Keywords also inform
the compiler about specifics of the host processor like memory limitations or special internally
generated operations like array dereferencing.

The keywords of FBASIC are summarized in the four groupings that follow:

Compile directives:

ANOTE = places a note in the conpiler output.

BREAK = places a break point in debugger synbol file.
WATCH = pl aces a watch point in debegger synbol file.
KEYWCRD = inforns conpiler that synbol is a keyword.
VECTOR = inforns the conpiler about an interupt vector.
DEFI NE = assign a synbol to a textual meaning.

I NCLUDE = conpil e a conponent source file at this point.
| NTERNALS = i nform conpil er about internal token generation.
LI BRARY = conpile a unique source file at this point.
MEMORY = inform conpil er about nenory limts.

| FDEFI NED = affirmative conditional line in conpilation.
| FNOTDEFI NED = negative conditional conpilation |ine.

Data Definition and Declaration directives:

SI ZE = assigns a synbol to a physical data size.

TYPE = assigns a synbol a logical neaning of a data size.
G CBAL = allocate RAM for a gl obal variabl e.

LOCAL = allocate RAMfor a | ocal variable.

PARAMETER = define paraneter for a FUNCTI ON or OPERATI O\
ALIAS = renane a gl obal RAM | ocation as another synbol .
ALLOCATE = al |l ocate EEprom space for data storage use.
INNTIAL = define initial contents of an ALLOCATE.

RECCRD = define a data structure block for an ALLOCATE.
SEQUENCE = defines a sequence for external structures.
FIELD = define a conponent field of a RECORD.

ENDRECCRD = ends a RECCRD bl ock definition.

Procedural Declaration and Definition directives:

Protean Logic 86

5 FBASIC Keywords FBASIC TICKit

FUNCTI ON = define a function bl ock.

ENDFUNCTI ON = ends a FUNCTI ON bl ock definition.

PROTOTYPE = Declares a function synbol with no procedure.
CPERATI ON = define an operation bl ock.

ENDCPERATI ON = ends an CPERATI ON bl ock defi niti on.

EQU VALENT = define a function to be equival ent to another.

Flow Control directives:

IF = mark the start of a conditional program path.
ELSEIF = mark the start of a alternate conditional path.
ELSE = nark the opposite condition program pat h.

ENDIF = mark the end of conditional program paths.
REPEAT = mark start of an unconditional |oop construct.

VWH LE = mark start of a |l oop and define the | ooping test.
UNTIL = mark end of a | oop and define the exit test.

LOCP = nmark end of an unconditional |oop construct.

SKIP = define condition to skip to the end of a | oop.

STCP = define condition to exit a | oop.

CALL = calls another function. (default keyword)

EXIT = exit current function and return to calling function.
QOrO = execute at specified |abel.

BB = execute at specified |abel and RETURN here.
RETURN = return to line follow ng prior gosub.

Flow Control directives can only appear in special blocks called "procedure blocks". The blocking
concept is used by FBASIC to keep things neat in a source file. Procedure blocks are started using the
FUNCTION directive and end with the ENDFUN directive.

The other type of blocking structurein FBASIC is RECORD. Thisis used to collectively refer to a
group of data items by one symbolic name and assign the initial values to be contained in this group
when the program starts. Thisis useful for data storage applications such as lists.

Elements of alanguage that are not keywords are the standard libraries. Libraries are simply a set of
pre-written functions and definitions that are assumed to be useful to programmers in that language.
Library functions can be overridden by the programmer for any specific task. The standard libraries of
functions and data types for FBASIC are summarized later in this manual.

Detailed information on each keyword directive follows.

ALIAS
ALIAS: Alias declaration of internal RAM storage.
ALIAS <size_or_type> <variable_name> <overlay_name> (<overlay_offset>)

Thisdirective is used outside of procedure blocks. Use this directive to refer to a previously allocated
RAM storage location by a name different than that used for the initial allocation. Use of aliases can

87 Protean Logic

FBASIC TICKit 5 FBASIC Keywords

conserve RAM space in conditions where the programmer knows that there will be no conflict
between the two names for the location. ALIAS can also be used to overlay variables of smaller size
over avariable of larger size. Thisis useful for building up or deconstructing larger types. (This
syntax is dated, use the GLOBAL or LOCAL directives with the ALIAS option instead).

ALLOCATE
ALLOCATIONS: Used to reserve program memory locations

ALLOC(ATE) <initial_offset>
ALLOC(ATE) <size_type_or_record> <allocation_name> ('[' <count> ")

This statement can only appear outside of procedure blocks. Allocate directs the compiler to reserve
sufficient program memory to store count items of the size given. The symbolic name will be a
constant that points to the first address of this reserved area. Thisis useful for symbolic representation
of stored data. The ALLOCATE directive can also be used to indicate to the compiler where to begin
the data storage in EEprom. Normally the compiler places all allocations and strings immediately
following the program code in the EEPROM. The initial offset form of ALLOCATE can be used to
force the storage to begin at a different location. This can be useful if part of the EEPROM write
protected.

See RECORD and FIELD for more information on structures in EEPROM

SEQUENCEIis asimilar directive but does not effect EEPROM allocation at all. Use SEQUENCE
instead of ALLOCATE if symbolic addresses are being assigned to memory other than the EEPROM
of the TICkit.

ANOTE
ANOTES: Used to place text in the compiler output
ANOTE <any single line of text>

This statement can only appear outside procedure blocks. ANOTE directs the compiler to place the
following text in the status output of the compiler. This action has no effect on the output token file.
This directive can be used to indicate which libraries or include files are compiled for any given
program.

BREAK

BREAKS: Used to indicate a default break point to the debugger
BREAK <any procedural keyword and statement>

This statement can only appear inside procedure blocks. BREAK directs the compiler to place a break
point symbol in the symbol file. This action has no effect on the output token file, but instructs the

Protean Logic 88

5 FBASIC Keywords FBASIC TICKit

debugger that this line is a break point when the debuggertsrts. Only the first 10 default break
pointscan be recognized by the debugger.

CALL

CALL: Evaluates an expression.
(CALL) <expression_with_no_return_value>

This statement is procedural and can appear only after the BEGIN statement in a procedure block.
The CALL keyword is optional because any first word on aline which is not akeyword will be
interpreted as a CALL statement. This statement will cause the following expression, of SlZfbne,

to be evaluated. If the first function or operation of the expression has a return value, an error will be
returned.

DEFINITION

DEFINITIONS: Textual equatesin the source code.
DEF(INITION) <symbol_name> <any_text>

This directive is valid anywhere, but is a global equate only when it appears outside a procedure
block. Thisis used to make code more readable and to eliminate arcane numeric references.
DEFINED symbols can also be used to conditionally compile certain sections of a program. See
IFDEFINED and IFNOTDEFINED for more details on conditional compilation.

EQUIVALENT
EQUIVALENT: Defines a function prototype that uses a procedural section of an existing function

FUNC(TION) <size_or_type> <function_name>
parameters....
locals...

EQUIV(ALENT) <existing_function_name>

This directive is not currently implemented for the TICKit57 and TICkit62. The Equivalent directive
is used when special versions of existing functions are required that use more specific parameter and
return value types.

EXIT

EXITs: Returnsto theline CALLing function.
EXIT

89 Protean Logic

FBASIC TICKit 5 FBASIC Keywords

This statement can only appear within a procedural block. EXIT will cause the execution to resume at
a point immediately following the reference to the function that EXIT appearsin. If the function has a
return value, the value contained in the variable "exit_value" will be passed back to the calling
reference as the value of the function. Therefore, to return a value for a function, assign the desired
return value to the variable "exit_valué immediately before executing an EXIT statement. An

implicit EXIT occurs whenever ENDFUNCTION is encountered.

FIELD
FIELDs: Defines subordinate elements of a RECORD or ALLOCATION.
FIELD <type_or_record> <symbol_name> ([’ <count>'7'")

Thisdirective is used in RECORD blocks to define data elements inside the larger structur&he
"count" is optionally used to make an array out of the field. The default count is one.

FUNCTION
FUNCTIONSs: External function code definition.

FUNC(TION) <size_or_type> <function_name>
parameters....
locals...

BEGIN
procedural statements....

ENDFUN(CTION)

This directive can only be used outside of procedure blocks and defines a function. Any
PARAMETERSs, LOCALSs, and DEFINESs defined within the FUNCTION block are only defined to
procedure statements within that FUNCTION block. If the function has a return value, alocal
variable called "exit_value" of the function's type will exist for the duration of the function. Assign
the desired return value "exit_valué immediately before EXIT or ENDFUNCTION.

GLOBAL
GLOBALSs: Global internal RAM storage allocation.

GLOBAL <size_or_type> <variable_name> ('['<count>'") (<initial_value(s)>)
or
GLOBAL <size_or_type> <variable_name> ALIAS <variable_name> (<offset>)

This directive is used outside of procedure blocks. This directive allocates Global data from the
bottom of memory as opposed to the internal RAM stack which grows down from the top of memory.
Therefore, usage of global values reduces the available stack for subroutines and local values.
Because local allocations are returned to the RAM pool after a function finishes executing, local
variables are often more memory efficient than global values. Global values execute faster however,

Protean Logic 90

5 FBASIC Keywords FBASIC TICKit

and may even be more space efficient if the variable can be safely re-used in multiple functions. An
array of elements can be defined by using the '[]' characters and an element count. Exercise care when
defining arrays not to exceed the memory capacity of the device. The "WATCH" directive may be
used at the beginning of a GLOBAL statement to place awatch point symbol in the symbol file. Upon
startup, the debugger will automatically watch up to five GLOBAL values with WATCH directives.

The ALIAS option can be used to make the defined variable overlay an existing variable. This can
prove useful for building up larger types or for creating special combined types.

GOSUB
GOSUB: Executes a sub-section of a function as a sub-routine.
(GOSUB) <local_line_label>

This statement is procedural and can appear only after the BEGIN statement in a procedure block.
Program execution will shift to the line beginning with a label that matches "local_line_label". This
line must be in the same function as the GOSUB. Execution continues from that line until a RETURN
statement is encountered, and resumes immediately following the last GOSUB statement executed.
Care must be exercised when using GOSUB. If GOSUB and RETURN are not matched properly, the
program'’s stack could be destroyed, leading to unpredictable results. The preferred method for
performing subroutines within FBASIC is to use multiple functions with CALL statements.

GOTO

GOTO: Causes the flow of the program to alter.
GOTO <local_line_label>

This statement is procedural and can appear only after the BEGIN statement in a procedure block.
This directive causes execution within the program to jump to the location specified by
"local_line_label". Theline_label must be in the same procedure block as the GOTO.

IF

|Fs: Creates alternations and branches in the program flow.

IF <logical_expression>
procedural statements....

(ELSE or ELSEIF <logical_expression>)
procedural statements....

ENDIF

The | F statement is procedural and can only appear after the BEGIN statement in a
procedural block. Use this directive to change the flow of a program based on a condition, usually a

91 Protean Logic

FBASIC TICKit 5 FBASIC Keywords

variable comparison. The ELSE or EL SEIF are optional extensionsto this directive. This directive
can be lexically nested.

IFDEFINED
IFDEFINEDSs: Conditionally compile a line.
IFDEF[INED] <define_symbol> [any other directive]

The IFDEF statement is a compiler directive that and can appear anywhere. The directive which
follows on the same line as the IFDEF will only be executed if the referenced <define_symbol> exists.
If the symbol does not exist, the line will not be compiled. This line can be used in conjunction with
the INCLUDEor LIBRARY directives to conditionally compile large sections of a program.

IFNOTDEFINED
IFNOTDEFINEDSs: Conditionally compile aline.
IFN[OT]DEF[INED] <define_symbol> [any other directive]

The IFNOTDEFINED statement is a compiler directive and can appear anywhere. The directive
which follows on the same line as the IFNOTDEFINED will only be executed if the referenced
<define_symbol> does not exist. If the symbol exists, the line will not be compiled. This line can be
used in conjunction with the INCLUDE or LIBRARY directives to conditionally compile large
sections of a program.

INCLUDE
INCLUDES: Compile directive to include a subordinate file at this point.
INCLUDE <source_file_name>

The INCLUDE directive is used to merge another source file in the compilation of the program. This
is useful when organizing large programs or for special methods of repeating code in a program. The
INCLUDE directive differs from the LIBRARY directive in that the file will be included regardless of
whether or not the file was included in the compile previously. Using INCLUDE with IFDEFINED
and IFNOTDEFINED statements creates a powerful conditional compilation capability.

INITIAL
INITIALS: Set an initial value for EEprom Allocations.
INIT(IAL) <full_field_name> <initial_value> (<additional_values>...)

The INITIAL statement is used to place initial values into EEpronallocations. This can be very
useful for creating tables, etc. The "full_field_name" must include the name of the allocation, all

Protean Logic 92

5 FBASIC Keywords FBASIC TICKit

records, and the field name to completely identify the field. At least one initial valueis required. If
the field has a count greater than one, then additional initial values may be included up to the count
of the field. For byte type field, the special constant format ' * may be used to specify a string of initial
values. This format differs from the " " constant format which evaluates to aword. The' ' format
evaluates to multiple bytes.

INTERNALS
INTERNALS: Speciestoken code for internal operatoins
INTERNALS <token codes> ...

This directive appears only in the token library for the TICkit interpreter. The list of tokens instructs
the compiler how to generate array dereferences and other token references generated automatically
by the expression generator.

KEYWORD
KEYWORDs: Thisdirective is used to inform the compiler that a symbol is reserved.
KEYWORD <reserved_symbol>

This directive appears only in the "fbasic.lib”. A user may wish to use this directive to reserve
symbols that will eventually appear in a program. Normally, this directive will not be used except in
the standard library.

LIBRARY

LIBRARY: Textually included source code.
LIB(RARY) <file_name>

This directive is valid anywhere in the body of the code, but use in the beginning of a program aids
readability. The "filename" isthe DOS text file which is to be included in the compile at this point in
the source. LIBRARY and INCLUDE differ only in the case that afile name is used that has
previously been used in the same compile. LIBRARY will ignore athe request if afile_name appears
twice. INCLUDE will process the file regardless of whether or not it had appeared in the compile
previously.

LOCAL

LOCALSs: Local internal RAM storage allocation.

LOCAL <size_or_type> <variable_name> ('[' <count>"") (<initial_value(s)>)
or
LOCAL <size_or_type> < variable_name> ALIAS <variable_name> (<offset>)

93 Protean Logic

FBASIC TICKit 5 FBASIC Keywords

Thisdirective is used inside of program blocks prior to the BEGIN statement. This directive allocates
LOCAL data from the bottom of memory. A pointer to that memory location is placed on the internal
RAM stack which grows down from the top of memory. Because local allocations are returned to the
RAM pool after afunction finishes executing, local variables are often more memory efficient than
global values. Global values execute faster however, and may even be more space efficient if the
variable can be safely re-used in multiple functions, possibly using the ALIAsBatement. Arrays of
LOCAL variables can be defined by using the '[]' characters and an element count. Take care not to
exceed the stack space of the device when allocating arrays. LOCAL values exist only while the
program is executing, for this reason, current debugger implementations are not able to watch or
examine LOCAL values by symbol name.

The ALIAS option can be used to make the defined variable overlay an existing variable. This can
prove useful for building up larger types or for creating special combined types.

MEMORY
MEMORY: Specify memory constraints for a host processor

MEMORY HIGH <upper RAM limit>
MEMORY LOW <lower RAM limit >
MEMORY EEPROM <sequence breaks in EEprom>

This directive usually appears in the token library for a device. It tells the compiler how to assign
global memory and when to generate warnings about EEprom sequence breaks. The values of these
limits are defined by the version of the TICKkit token interpretter and the type of size of each EEprom
connected to it.

OPERATION

OPERATIONS: Internal operation code definition.

OPER(ATION) <size_or_type> <operation_name>
parameters....

BEGIN hexadecimal values....

ENDOP(ERATION)

This directive can only appear outside of code blocks and informs the compiler of internally
implemented functions. These functions are identical to source level functions except that they
operate faster and must be implemented in the token interpreter.

PARAMETER

Parameters: Define the parameter list and symbolic argument names for functions or operations.

PARAM(ETER) <size_or_type> <argument_name>

Protean Logic 94

5 FBASIC Keywords FBASIC TICKit

This directive can only be used inside of procedure blocks between the OPERATION or FUNCTION
directive and the BEGIN directive. PARAMETERs inform the compiler how to handle the argument
or parameter list for the FUNCTION or operation in which they appear. PARAMETERSs also assign a
symbolic name to the argument so that they may be used indirectly by the FUNCTION in which they
appear. PARAMETERSs are temporary names that pointer to the variables used in the function call.

PROTOTYPE

PROTOTYPESs: Declare a function without creating the procedure.

FUNCI[TION] <return_type> <function_name>
parameters...
PROTO[TYPE]

The PROTOTY PE directive is used to define a function symbol without actually defining the
procedure associated with the function. Thisis useful when doing recursive applications, or any other
time that a function will be referenced before it is defined. The FBASIC single pass compiler
characteristic requires that programs be written in a"top down" style. The use of PROTOTY PES for
all functionsin a program frees the programmer from the "top down" requirement.

RECORD
RECORDSs: Used for making symbolic maps of external memory allocations

REC(ORD) <record_name>
fields....
ENDREC(ORD)

This block can only appear outside of a procedure block. Record blocks are used to declare relative
locations of items logically grouped in EEprom memory, or other memory areas. The structures can
not be nested, but may lexically recurs. The defined structures can then be declared using the
ALLOCATE statement, which actually reserves program space for the records. When arecord symbol
appearsin an expression, it evaluates to a constant of SIZE "word_size". This constant can then be
manipulated as a pointer to any sort of memory device.

95 Protean Logic

FBASIC TICKit 5 FBASIC Keywords

REPEAT

REPEATSs: Marks the beginning of a loop with no looping condition.

REPEAT
procedural statements....
(STOP)
procedural statements....
(SKIP)
procedural statements....
UNTIL <logical_expression> or LOOP

This directive causes the enclosed block to repeat while the repeat_condition is true or until the
exit_condition istrue. The STOP directive will exit the body of the loop and the SKIP directive will
cause the loop to perform the next iteration without finishing the body of the loop by skipping to the
statement at the bottom of the block. L ooping directives can be lexically nested.

RETURN

RETURNS: Returnsto the line immediately following the last GOSUB.
RETURN

This statement can only appear within a procedural block. RETURN will cause the execution to
resume at a point immediately following the last GOSUB that was executed. Because return addresses
are stored on the stackby the GOSUB statement, and removed by the RETURN statement. The
number of RETURNS executed in a function must exactly match the number of GOSUBs executed in
afunction.

SEQUENCE
SEQUENCES: Establish a sequence for external storage.

SEQ(UENCE) <sequence_number> <initial offset>
SEQ(UENCE) <sequence_number> <size, type or record> ~
~ <symbol_name> ('[' <count>"1")

This statement can only appear outside of procedural blocks. SEQUENCE is used to establish either a
beginning offset for a given sequence number or to indicate the location of a storage element or array
at the current offset for the sequence number. The offset is increased to the first byte past the storage
required if a storage element or array is referenced. SEQUENCE isvery similar to ALLOCATE
except that it does not effect the EEPROM allocation and that there can be more than one sequence
for a program. Up to 10 sequences, each uniquely identified by a sequence number, can be used for a
program in this version of the FBASIC compiler.

<count> isused to create an array for the <symbol _name> at the current sequence offset.

Protean Logic 96

5 FBASIC Keywords FBASIC TICKit
SIZE

SIZEs: Define a symbol to one of the intrinsic data sizes of the compiler.

SIZE <size_symbol> <number_of_type_size>

This directive appears in the "fbasic.lib” file. This directive is used to assign a symbol which is easier
to remember and more concise than the numbers that the compiler recognizes for size designators.
The default sizes are: none, byte, word, and long. None uses no storage, byte uses one 8 hit location,
word uses two 8 bit locations, and long uses four 8 bit locations. Only long is arithmetically signed.

TYPE

TYPESs: Define alogical meaning to a data size.
TYPE <symbolic_meaning> <size_symbol>

This directive, which is similar to the SIZE directive, is used to more loosely assign a meaning to a
dataitem. The symbolic meaning does not override the SIZE of the dataitem but will prevent another
dataitem which has a different symbolic meaning from being assigned to this data item. By using
these restricting measures, the compiler can prevent an accidental misuse of dataitems of the same
physical size, but different logical meanings.

VECTOR

VECTORSs: Infrom the Compiler about hardware I nterrupt Vectorsin TICkit memory. Vectors are
attributes of the Microprocessor and the I nterpreter firmware.

VECTOR <symbolic_name>

This directive appears only in the standard token library. Each use of the VECTOR statement defines
afunction name to be associated with the physical vector of the processor and the processor firmware.
Thefirst VECTOR directive assignes the first vector slot. Each subsequent appearance of the
VECTOR directive assigns subsequent vector memory locations.

WATCH
WATCHSs: Marks data element as a watch point in subsequent debugging sessions
WATCH GLOBAL <type> <symbol_name> (<initial_value>)

The WATCH directive is used to place a symbol in the watchpoint list of the debugger. Using this
directive may save time when debugging more complex programs. Only global values can be watched
by the debugger in current versions.

97 Protean Logic

FBASIC TICKit 5 FBASIC Keywords
WHILE

WHILEs: Marks the beginning of a loop with a condition to loop.

WHILE <logical_expression>
procedural statements....

(STOP)
procedural statements....

(SKIP)
procedural statements....

UNTIL <logical_expression> or LOOP

This directive causes the enclosed block to repeat while the repeat_condition is true or until the
exit_condition istrue. The STOP directive will exit the body of the loop and the SKIP directive will
cause the remainder of loop to be omitted by skipping to the statement at the bottom of the loop.
Looping directives can be lexically nested.

Protean Logic 98

6 Standard Library FBASIC TICKit

6 Standard Function Library

6.1 Standard Libraries: "What do they contain, Books?"

A programming language like FBASIC is very lean. It contains only the basic building blocks of
programs, but very few functional parts. The standard library provides most of the functinality of
FBSIC. The standard library is a set of functions, operations, definitions, and declarations. The
standard library contains things like math functions, input and output functions, bit manipulation, etc.

Physically, the standard library is a collection of program fragments the author of the language
assumes are useful to the programmer. The programmer can call functions from the standard library
that are required for alarger application. Also, the programmer may decide that certain functions of
the standard library are inappropriate or unnecessary for a given application. For this reason, the
library is broken down into smaller library files and organized in a sort of hierarchy where library
files depend on functions in other files to get the job done. The programmer must determine which
library filesto reference in his program in order to make an efficient program.

Normally, the programmer will use a define statement and the FBASIC.LIB file to include the
appropriate standard library for the processor revision being used. Therefore, the following two lines
usually appear as the first directives of a program:

DEF tic62_a
LIB fbasic.lib

As mentioned above, a programmer may wish to have greater control over which elements of the
standard library are included in a program. When this is the case, the programmer must pick and
choose elements from the library files. Thisis easy to do since each library file can be examined and
modified with a text editor.

The standard library also includes a reference to extended functions not in the firmware of the
processor. To exclude these libraries from your program use the following define before the reference
to fbasic.lib

DEF tic62_a
DEF operations_only
LIB fbasic.lib

99 Protean Logic

FBASIC TICKit 6 Standard Library

6.2 Standard Library Summary

The following sections of the manual divide the functions of the standard library according to
function groups. The group headings are:

[

. Assignment and size conversion functions
. Mathematical Functions

. Bit manipulation functions

. Logical relational test functions

. Input and output functions

. EEprom read and write functions

. I1C peripheral funtions

. Parallel Buss (LCD) functions

. Timing and Counting Functions

. RS232 functions

11. Console functions

12. System, interrupt and miscellaneous functions
13. Integrated peripheral functions

Library organization is as follow. Notice that including fbasic.lib automatically includes the proper
token library and the proper token extension library. Y ou need to explicitly include any other library
(likers_fmt.lib) if you want the functionsin it. Simply add L1B rs_fmt.lib into your program before
you reference any functions of that library. Also be aware of any DEF statements that the library may
expect. All libraries can be viewed with atext editor.

© 00 ~NO UL WN

=Y
o

fbasic.lib = FBASIC keyword and size declaration.
token.lib (tic62c.lib) = token interpreter operation declarations.
tokext.lib (ticx62c.lib) = Extension functions. Use DEF opertions_only to exclude.

ee.lib = larger size EEprom functions

rs232.lib = rs232 string and numeric functions
rsstring.lib = send a null terminated string
rsbyte.lib = byte to string of numbers
rsword.lib = word to string of numbers
rslong.lib = long to string of numbers
rsfmt.lib = formatted long to string of numbers

con.lib = consolse string and number functions
constrin.lib = send a null terminated string
conbyte.lib = byte to string of numbers
conword.lib = word to string of numbers
conlong.lib = long to string of numbers
confmt.lib = formatted long to string of numbers

Icd.lib = LCD buss functions for controlling HD44780 based LCD modules
[cdinit.lib = initialize the LCD and buss

Protean Logic 100

6 Standard Library FBASIC TICKit

Icdstrin.lib = send a null terminated string

Icdbyte.lib = byte to string of numbers

Icdword.lib = word to string of nhumbers

Icdlong.lib = long to string of numbers

Icdfmt.lib = formatted long to string of numbers

Icdchar.lib = character generator programming function

Icdscroll.lib = scrolling routines to make an LCD look like aterminal

6.3 Additional Libraries Summary

When an additional library is included, the minimum size of your program increases because all
functions referenced in the extend library are put into your program whether you use them or not.
Usually, you use the extend library when you want to develop a program quickly.,.

Various libraries may be placed on release disks. These libraries are often hardware dependent. Other
extended libraries can be found on the Protean BBS. Libraries for serial A/D chips and serial clock
chips are afew examples. Y ou can use a simple text editor to view these library files. Notes on their
use will be contained as commentsin the library files. Do not be intimidated by library files, they are
simply small functions and provide a nice way to increase the number of tools available to you. Every
time you write a function for dealing with a specific type of hardware device or any time you develop
a section of code you think you will re-use, put that function into alibrary file so you can access it
easily in future programs.

6.4 Assignment and Size Conversion Functions

Assignment is the most basic of programing functions. The contents of one memory variable or
constant is copied into another memory variable. The truncate functions simply drop bytes of higher
order than the result requires. Thisis, in essence, a modulus function of either 256 or 65536. The
to_xxx functions append 0 value bytes to the higher order bytes of the result. The return value of
to_xxx functions have the same numeric value as the argument only in alarger variable size.

= Assignment

none =(byte dest, byte source) token.lib
none =(word dest, word source) token.lib
none =(long dest, long source) token.lib
Multi-precision assignment function. The contents of the source value is copied into the
destination.

trunc_byte Truncates a larger size to a byte
byte trunc_byte(long arg) token.lib
byte trunc_byte(word arg) token.lib
Truncates the argument to a byte size. Any information in the more significant bytesis
discarded.

101 Protean Logic

FBASIC TICKit 6 Standard Library

trunc_word Truncates a larger size to a word

word trunc_word(long arg) token.lib
Truncates the argument to a word size. Any information in the more significant bytesis
discarded.

to_word Extends a smaller size to a word

word to word(byte arg) token.lib
Extends the argument to aword size by placing zeros in the more significant bytes.

to_long Extends an (argument) to long size
long to_long(byte arg) token.lib
long to_long(word arg) token.lib
Extends the argument to along size by placing zeros in the more significant bytes.

Conversion Function Examples:

; determne the nmost significant Hex digit of a word

FUNCTI ON none main
LOCAL word in_val 10000
LOCAL byte char_val
BEG N
=(char_val, trunc_byte (/(in_val, 4096)))
IF >(char_val, 9)
=(char_val, +(char_val, '0"))
ELSE
=(char_val, +(char_val, - ("A, 10b)))
ENDI F

con_out _char (char_val)
ENDFUN

6.5 Mathematical Functions

The mathematical functions are used to perform arithmetic in FBASIC. The mathematics functions
can be viewed as a "prefix" notation for expressions. In expressions where order is significant, like
subtraction and division, The first argument is the value that is operated on, while the second
argument is the value of the operation. In division then, the first argument is the numerator and the
second argument is the denominator and the value returned is the quotient.

Protean Logic 102

6 Standard Library FBASIC TICKit

+ Arithmetic Sum
byte +(byte argl, byte arg2) token.lib
word +(word argl, word arg2) token.lib
word +(byte argl, word arg2) token.lib
word +(word argl, byte arg2) token.lib
long +(long argl, long arg2) token.lib
long +(long argl, word arg2) token.lib
long +(long argl, byte arg2) token.lib
long +(word argl, long arg2) token.lib
long +(byte argl, long arg2) token.lib
Multi-precision addition function. Two arguments are added together. The result is returned
as the value of the function.

++ Increment by One

byte ++(byte arg) token.lib

word ++(word arg) token.lib

long ++(long arg) math32.1ib
Multi-precision increment single argument. The return value of the function is one plus the
argument value.

- Arithmetic Difference

byte -(byte argl, byte arg2) token.lib
word -(word argl, word arg2) token.lib
word -(byte argl, word arg2) token.lib
word -(word argl, byte arg2) token.lib
long -(long argl, long arg2) token.lib
long -(long argl, word arg2) token.lib
long -(long argl, byte arg2) token.lib
long -(word argl, long arg2) token.lib
long -(byte argl, long arg2) token.lib

Multi-precision subtraction function. The result of argl less arg2 is returned as the value of
the function.

- Arithmetic Inverse (change sign)

long -(long arg) nmath32.1ib
Change sign function. The complement of arg is returned as the value of the function.

-- Decrement by One

byte --(byte arg) token.lib

word --(word arg) token.lib

long --(long arg) math32.1ib
Multi-precision decrement single argument. The return value of the function is the argument
value less one.

103 Protean Logic

FBASIC TICKit 6 Standard Library

* Arithmetic Product
byte *(byte argl, byte arg2) token.lib
word *(word argl, word arg2) token.lib
word *(byte argl, word arg2) token.lib
word *(word argl, byte arg2) token.lib
long *(long argl, long arg2) token.lib
long *(long argl, word arg2) token.lib
long *(long argl, byte arg2) token.lib

long *(word argl, long arg2) token.lib

long *(byte argl, long arg2) token.lib

Multi-precision multiplication function. The result of argl multiplied by arg2 is returned as
the value of the function.

[/ Arithmetic Division

byte /(byte argl, byte arg2) token.lib
word /(word argl, word arg2) token.lib
word /(byte argl, word arg2) token.lib
word /(word argl, byte arg2) token.lib
long /(long argl, long arg2) token.lib
long /(long argl, word arg2) token.lib
long /(long argl, byte arg2) token.lib
long /(word argl, long arg2) token.lib
long /(byte argl, long arg2) token.lib

Multi-precision division function. The result of argl divided by arg2 is returned as the value
of the function.

% Arithmetic Modulus (Remainder)
byte % byte argl, byte arg2) token.lib
word % word argl, word arg2) token.lib
byte % byte argl, word arg2) token.lib
word % word argl, byte arg2) token.lib
long % long argl, long arg2) token.lib
long % long argl, word arg2) token.lib
long % long argl, byte arg2) token.lib
word % word argl, long arg2) token.lib
byte % byte argl, long arg2) token.lib

Multi-precision remainder function. The remainder of argl divided by arg2 is returned as the
value of the function. For 32 bit functions, the sign follows that of argl.

array_byte Calculate Address of a byte array element

word array_byte(word offset, word index) token.lib
This function returns aword value which is the address of an element of an array which
starts at "offset” and which is the "index" numbered element.

Protean Logic 104

6 Standard Library FBASIC TICKit

array_word Calculate Address of a word array element

word array_word(word offset, word index) token.lib
This function returns aword value which is the address of an element of an array which
starts at "offset” and which is the "index" numbered element.

array_long Calculate Address of along array element

word array_|long(word offset, word index) token.lib
This function returns aword value which is the address of an element of an array which
starts at "offset” and which is the "index" numbered element.

array_size Calculate Address of an array element

word array_size(word offset, word size, word index) token.lib
This function returns aword value which is the address of an element of an array which
starts at "offset" and which is the "index" numbered element. All elementsin the array are
assumed to be of "size" number of bytes.

Mathematics Function Examples:

; programto count the nunbers from 100 to 2000 by 10
FUNCTI ON none mai n

LOCAL word cnt _val
BEG N

rs_paramset (debug_pin) setup consol e to use
the same connection as
t he debugger
set count value to 100

=(cnt_val, 100)
REP
con_out (cnt_val)
=(cnt_val, + (cnt_val, 10))
UNTIL >(cnt_val, 2000)
ENDFUN

6.6 Bit Manipulation Functions

The bit manipulation functions work on byte values only. Each bit of the arguments have the function
performed on them. For example, an "AND" function isreally 8 AND functions where the result of
each of the AND operations is placed in the 8 bits of the return value of the function. These functions
are usually used for masking out specific bits for test or combination from bytes and words. Logical
functions are typically used as conjunctions for comparative functions (==,>,<). Logical functions are
only available for byte types.

105 Protean Logic

FBASIC TICKit 6 Standard Library

b_and 8 and 16 bit Bitwise logical and function
byte b_and(byte argl, byte arg2) token.lib
word b_and(word argl, word arg2) token.lib
The result is the bit by bit AND of arguments one and two. The 8 bit version of this function
can also be used as alogical AND but the and() function is recommended for logical
conjunction.

b_or 8 or 16 bit Bitwise logical OR function
byte b_or(byte argl, byte arg2) token.lib
word b_or(word argl, word arg2) token.lib
The result is the bit by bit OR of arguments one and two.

b_xor 8 or 16 bit Bitwise logical exclusive or function
byte b _xor(byte argl, byte arg2) token.lib
word b_xor(word argl, word arg2) token.lib
The result is the bit by bit EXCLUSIVE-OR of arguments one and two.

b_not 8 or 16 bit Bitwise logical complement function
byte b_not(byte arg) token.lib
word b_not(word arg) token.lib
The result if the bit by bit NOT of the argument. Therefor, all bits that are 1 in the argument
are returned as 0 and vice versa.

>> 8 and 16 bit arithmetic shift argument to the right
byte >>(byte arg) token.lib
word >>(word arg) token.lib
All bits of the argument are shifted toward bit 0. The least significant bit is discarded as a
result and zero is placed in msb.

<< 8 and 16 bit arithmetic shift argument to the left
byte <<(byte arg) token.lib
word <<(word arg) token.lib
All bits of the argument are shifted toward the msb. The most significant bit is therefore,
discarded. O is placed in the L SB.

b_set Set bitsin an 8 or 16 bit field by mask
none b_set(byte field, byte nask) tokext.lib
none b_set(word field, word nask) tokext.lib
Bits are set in the field argument on the basis of which bits are set in the mask. Any bits
which are set in the mask will be set in the field argument. Bits in the mask which are zero,
will leave the cooresponing bits in the field argument unchanged. These functions are useful
for conserving space by using bits as boolean flags.

Protean Logic 106

6 Standard Library FBASIC TICKit

b_clear Clear bits in an 8 or 16 bit field by mask
none b_clear(byte field, byte nask) tokext.lib
none b_clear(word field, word nask) tokext.lib
Bits are cleared in the field argument on the bsis of which bits are set in the mask. Any bits
which are set in the mask will be set in the field argument. Bits in the mask which are zero,
will leave the cooresponding bits in the field argument unchanged.

b_test Tests bitsin an 8 or 16 bit field by mask

byte b test(byte field, byte nask) tokext.lib

byte b _test(word field, word nask) tokext.lib
This function tests specific bitsin afield. If any of the bits specified by the mask are set in
the field Oxffb is returned. If all the specified bits are zero, the function returns Ob. Thisisa
convenient way to test bits used as boolean flags.

Bitwise Function Examples:
Routine to read data froma ADX831 A/'D chip

FUNCTI ON byt e ad_read ; '"Returns a byte'
LOCAL byte count Ob ; a Byte counter
BEG N
pi n_I ow(cl k) ; make pin an output,
; needed when sharing buss
pi n_l ow(cs) ; enable chip
pul se_out _high (clk,10w) ; toggle clk to get start bit
REPEAT
pul se_out _hi gh(cl k, 10w) ; toggle clk to get bits
=(exit_val ue, <<(exit_val ue)) ; shift bits

=(exit_val ue, ~
~b_or(exit_value , ~
~b_and (pin_in(data), 1b)))
; mask bit and add to data

++(count)
UNTI L ==(count, 8b)
pi n_| ow dat a) ; return bus data line to output
pi n_hi gh(cs) ; disable chip
ENDFUN

6.7 Logical And Relational Test Functions

Logical relational functions are used in conditional flow control expressions, like IF or WHILE.
Relational functions return 255 (0xff) if the two arguments meet the relational condition, or O if they
do not. The bitwise combination logic functions, "and", "or", "not", and "xor" can be used with these
functions provided all true valuesin the expression have all bits set (Oxff).

107 Protean Logic

FBASIC TICKit 6 Standard Library

== Multi-precision relational test for equal

byte ==(byte argl, byte arg2) token.lib
byte ==(byte argl, word arg2) token.lib
byte ==(byte argl, long arg2) token.lib
byte ==(word argl, byte arg2) token.lib
byte ==(word argl, word arg2) token.lib
byte ==(word argl, long arg2) token.lib
byte ==(long argl, byte arg2) token.lib
byte ==(long argl, word arg2) token.lib
byte ==(long argl, long arg2) token.lib

If the result of argl less arg? is equal to zero, Oxff isreturned. Otherwise, a0 is returned as
the value of the test.

>= Multi-precision rel. test for greater than or equal

byte >=(byte argl, byte arg2) token.lib
byte >=(byte argl, word arg2) token.lib

byte >=(byte argl, long arg2) token.lib
byte >=(word argl, byte arg2) token.lib
byte >=(word argl, word arg2) token.lib
byte >=(word argl, long arg2) token.lib
byte >=(long argl, byte arg2) token.lib
byte >=(long argl, word arg2) token.lib
byte >=(long argl, long arg2) token.lib

If the result of argl less arg? is greater than or equal to zero, Oxff is returned. Otherwise, a0
isreturned as the value of the test.

<= Multi-precision relational test for less than or equal

byte <=(byte argl, byte arg2) token.lib
byte <=(byte argl, word arg2) token.lib
byte <=(byte argl, long arg2) token.lib
byte <=(word argl, byte arg2) token.lib
byte <=(word argl, word arg2) token.lib
byte <=(word argl, long arg2) token.lib
byte <=(long argl, byte arg2) token.lib
byte <=(long argl, word arg2) token.lib
byte <=(long argl, long arg2) token.lib

If the result of argl less arg2 is less than or equal to zero, Oxff is returned. Otherwise, a0 is
returned as the value of the test.

Protean Logic 108

6 Standard Library

FBASIC TICKit

> Multi-precision relational test for greater than

byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

byt e
byt e
byt e
wor d
wor d
wor d
| ong
| ong
| ong

argl,
argl,
argl,
argl,
argl,
argl,
argl,
argl,
argl,

byt e
wor d
| ong
byt e
wor d
| ong
byt e
wor d
| ong

arg2)
arg2)
arg2)
arg2)
arg2)
arg2)
arg2)
arg2)
arg2)

token.lib
token.lib
token.lib
token.lib
token.lib
token.lib
token.lib
token.lib
token.lib

If the result of argl less arg? is greater than zero, Oxff is returned. Otherwise, a0 is returned
asthe value of the test.

< Multi-precision relational test for less than

byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

byt e
byt e
byt e
wor d
wor d
wor d
| ong
| ong
| ong

argl,
argl,
argl,
argl,
argl,
argl,
argl,
argl,
argl,

byt e
wor d
| ong
byt e
wor d
| ong
byt e
wor d
| ong

arg2)
arg2)
arg2)
arg2)
arg2)
arg2)
arg2)
arg2)
arg2)

token.lib
token.lib
token.lib
token.lib
token.lib
token.lib
token.lib
token.lib
token.lib

If the result of argl less arg? is less than zero, Oxff is returned. Otherwise, a0 is returned as
the value of the test.

<> Multi-precision relational test for not equal

byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

<>(
<>(
<>(
<>(
<>(
<>(
<>(
<>(
<>(

byt e
byt e
byt e
wor d
wor d
wor d
| ong
| ong
| ong

argl,
argl,
argl,
argl,
argl,
argl,
argl,
argl,
argl,

byt e
wor d
| ong
byt e
wor d
| ong
byt e
wor d
| ong

arg2)
arg2)
arg2)
arg2)
arg2)
arg2)
arg2)
arg2)
arg2)

token.lib
token.lib
token.lib
token.lib
token.lib
token.lib
token.lib
token.lib
token.lib

If the result of argl less arg2 is not equal to zero, Oxff is returned. Otherwise, a0 is returned
asthe value of the test.

and Perform logical AND conjunction on two bytes
byte and(byte argl, byte arg2) tokext.lib
This function returns Oxffb only if both arguments are logically true. In other words, this
function returns Ob if either of the argumentsis Ob. Use this function when combining
relational testsin logical expressions.

109

Protean Logic

FBASIC TICKit 6 Standard Library

or Perform logical OR conjunction on two bytes
byte or(byte argl, byte arg2) tokext.lib
This function returns Oxffb if either of the two argumentsislogically true. In other words,
this function returns Ob only when both of the argumentsis Ob. Use this function when
combining relational testsin logical expressions.

not Perform logical NOT on a byte
byte not(byte arg) tokext.lib

This function returns Oxffb only if the argument is zero. In other words, this function returns
Ob if the argument is any value other than Ob.

Examples:

FUNCTI ON none mai n
LOCAL in_tenp

BEG N
REP
=(in_tenp, ad_read())
IFor(<(in_tenp,35), >(in_tenp, 112))
allarn{ in_tenp)
ELSE
do_other_stuff(in_tenp)
ENDI F
LocP
ENDFUN

6.8 Input and Output Functions

The input and output functions represent the TICkits interface to the real world. All of these functions
are implemented as high speed internal PIC routines. Most of these routines refer to a pin_number
argument. The pin number is a byte that ranges between 0 and 15. The pin numbers O through 7
correspond to the pins labeled DO through D7 on the TICkit. The pin numbers 8 through 13
correspond to the pins labeled A0 through A5 on the TICKit. Pin number 14 is labeled R/W and pin
number 15 islabeled DL on the TICkit. Just as thisimplies, the 1/0O pins on the TICKkit can often
serve different rolesin different programs. Pins may serve as data or address bus pins, general 1/0
pins, or a serial connections.

pin_high Make pin a high logic output
none pi n_high(byte pin_nunber) token.lib
Make the specified pin an output and set it to a high voltage level. The pins are numbered 0
through 15 where 0 is the data port's pin 0 and 15 is the address port's pin 7.

Protean Logic 110

6 Standard Library FBASIC TICKit

pin_low Make pin alow logic output
none pin_|low byte pin_nunber) token.lib
Make specified pin an output and set it to a low voltage level. The pins are numbered O
through 15 where 0 is the data port's pin 0 and 15 is the address port's pin 7.

pin_in Make pin an input and return logic level
byte pin_in(byte pin_nunber) token.lib
Return alogical value representing the logical voltage level of the specified pin. A true value
isreturned if the pin has alogical high value input to it. The pins are numbered 0 through
15 where 0 is the data port's pin 0 and 15 is the address port's pin 7.

aport_get Get byte representing pin levels of address port

byte aport_get() token.lib
Read all 8 pins from the address port into a byte.

dport_get Get byte representing pin levels of data port

byte dport_get() token.lib
Read all 8 pins from the data port into a byte.

aport_set Set pin levels of address port

none aport_set(byte pins_values) token.lib
Sets all 8 pinsin the address port to the levels specified by pins_values.

dport_set Set pin levels of data port

none dport_set(byte pins_values) token.lib
Sets all 8 pinsin the data port to the levels specified by the pins_values.

atris_get Get status of address pin tristate levels

byte atris_get() token.lib
Returns all 8 bits from the address direction register. A zero in abit indicates that the
corresponding pin is an output.

dtris_get Get status of data pin tristate levels

byte dtris_get() token.lib
Returns all 8 bits from the data direction register. A zero in abit indicates that the
corresponding pin is an output.

atris_set Set tristate levels for address pins

none atris_set(byte dir_values) token.lib
Sets all 8 bits of the address direction register according to dir_values. A zero in a bit
indicates the corresponding pin is to be an output.

111 Protean Logic

FBASIC TICKit 6 Standard Library

dtris_set Set tristate levels for data pins

none dtris_set(byte dir_values) token.lib
Sets all 8 pins of the data direction register according to dir_values. A zero in a bit indicates
the corresponding pin is to be an output.

pulse_in_low Measure duration of a low pulse
word pul se_in_low byte pin_nunber) token.lib
M easures the duration of alow pulse on the specified pin. A zero isreturned if either no
pulseis detected or if the pulse is greater than .65535 seconds in duration. Each count is 10
microseconds.

pulse_in_high Measure duration of a high pulse
word pul se_in_high(byte pin_nunber) token.lib
Measures the duration of a high pulse on the specified pin. A zero isreturned if either no
pulseis detected or if the pulse is greater than .65535 seconds in duration. Each count is 10
microseconds.

pulse_out low Generate alow pulse on a pin

none pul se_out_low byte pin, word dur) token.lib
Generates a low pulse of the specified duration on the specified pin.
Each count produces a 10 microsecond duration.
NOTE: Pin must be made an output before executing this function.

pulse_out_high Genereate a high pulse on a pin
none pul se_out _high(byte pin, word dur)token.lib
Generates a high pulse of the specified duration on the specified pin.
Each count produces a 10 microsecond duration.
NOTE: Pin must be made an output before executing this function.

cycles Generate square wave cycles on a pin
none cycl es(byte pin, word cycles, ~
~word high time, word cycle_time) token.lib

Generates the specified number of square wave cycles on the specified pin, with the specified
high and cycle periods. All times are specified in approx. 3 usintervals. By keeping the high
time one half of the cycle time, a 50% duty cycle square wave can be generated. By varying
the duty cycle of the wave, the cycles function can be used as analog to digital conversion by
connecting a capacitor between the output pin and ground. Up to a 16 bit resolution can be
supported using this method. Use a constant as the fixed wave length of the conversion. The
voltage out will correspond to the ratio of the high_time divided by the cycle_time multiplied
by the high voltage. Frequencies as low as 2.5 cycles per second and as high as 60K cycles
per second can be generated using this function.
NOTE: Pin must be made an output before executing this function.

Protean Logic 112

6 Standard Library FBASIC TICKit

rc_measure Measure the resistance/capacitance at a pin

word rc_measure(byte pin) token.lib
M easures the discharge time of aresistance and capacitance circuit. This function can be
used to determine either the resistance or the capacitance in such acircuit. The resistance
and capacitance should be wired in parallel between the 1/0 pin specified and ground. A zero
will be returned if either the discharge time istoo low, or the charge/discharge time istoo
high. Appendix A describes this circuit in greater detail.

Examples:

; resistance to voltage converter

FUNCTI ON none mai n
LOCAL word res_val

BEG N
pin_low 9b) ; di scharge cap
REP
=(res_val, - (rc_neasure(9b), 1000)
; RCcircuit at pin9
cycles (10b, 100, res_val, 39000)
; DAcircuit at pin 10
; assume full range value is 40000 and | ow val ue
; 1s 1000.
LocP
ENDFUN

6.9 Eeprom Routines (Pointer Dereferencing)

The EEprom routines access information contained in the TICkit eeprom by using a 16 bit address.
Thisis the same memory that is used to contain the TICKkit program. When an FBASIC program is
compiled, the compiler calculates the amount of space required by the procedure and all
ALLOCATIONS. Thefirst EEpromlocation that is not used by the program is placed in a special
vector at the beginning of the EEprom by the compiler. The two bytes contained at |ocations 0x0004
and 0x0005 of the EEprom form a 16 bit word which is the address of the first available EEprom
space. This address and all addresses higher than it are available for a program to use. Much of this
address space may not be usable if no EEprom device has been installed for that area. The standard
2K EEprom TICkits have a total address space from 0x0000 to 0x07ff. 8K EEprom configured
TICkits are initially shipped with only an 8K EEprom installed, but an additional 7 devices may be
installed which brings the address range up to afull 64K. The programmer will need to code
programs with the known upper limit of memory to prevent an unsuccessful read or write to anillegal
address.

The ALLOCATEUdirective bypasses some of the complexity mentioned above. The ALLOCATE
statement will reserve EEprom space for data use. The address of any allocation or component field of
an allocation is known in an expression simply by referencing the full field and allocation name. The

113 Protean Logic

FBASIC TICKit 6 Standard Library

programmer must still exercise caution to ensure that allocations do not exceed the physically
implemented limit of the EEprom.

ee _read Read abyte at EEprom address

byte ee read(word address) token.lib
Reads a byte from the EEprom at the specified address. Reads that are out of the valid
address space (no eeprom maps to that address) will cause unpredictable results that may
result in premature program termination. The programmer must therefore assure that the
addressisvalid. EEprom address 4 and 5 contain the low and high bytes of the address of
the first available eeprom byte. All space from this point to the end of the EEprom storage
address space is available for program use. The ALLOCATE keyword can be used to allocate
EEprom data space in a structured way.

ee read_word Read aword at EEprom address

word ee read_word(word address) ee.lib
Reads aword from the EEprom at the specified address. Reads that are out of the valid
address space (no eeprom maps to that address) will cause unpredictable results that may
result in premature program termination.

ee read long Read along at EEprom address

long ee_read_|long(word address) ee.lib
Reads along from the EEprom at the specified address. Reads that are out of the valid
address space (no eeprom maps to that address) will cause unpredictable results that may
result in premature program termination.-

ee_write Write a byte to EEprom address

none ee_wite(word address, byte data) token.lib

none ee_wite(word address, word data) ee.lib

none ee_ wite(word address, long data) ee.lib
Writes the contents of the argument data to the EEprom at the specified address. See ee read
for more details.

Protean Logic 114

6 Standard Library FBASIC TICKit

EEprom Examples:

; use record and allocate to record purchases
LIBee.lib ; library for ee wite_word

RECCRD each_buy
FI ELD word cust _no
FI ELD word quantity
FI ELD word prod_no
ENDREC

ALLOC word | ast_purchs
ALLQOC each_buy purchs 100 ; make space for 100 purchases

G CBAL cur_purchs 0

FUNCTI ON none mai n ; list purchases
LOCAL word tenp_purchs
LOCAL word purch_count O
BEG N
ee _read_word(cur_purchs, last_purchs) ; read last rec
=(tenp_purchs, purchs) ; points to first record
VWH LE <(tenp_purchs, cur_purchs)
++ (purch_count)
con_out (purch_count)
con_out_char(' ')
con_out (ee_read word(~
~ +(tenp_purchs, cust_no@ach_buy)))
; display customer nunber
con_out_char(' ')
con_out(ee_read_word(~
~ +(tenp_purchs, quantity@ach_buy)))
; display quantity
con_out_char(' ')
con_out (ee_read_word(~
~ +(tenp_purchs, prod_no@ach_buy)))
di spl ay product nunber
con_out _char ("\r')
con_out _char("\I")

=(tenp_purchs, +(tenp_purchs, each_buy))
LocP
ENDFUN

115 Protean Logic

FBASIC TICKit 6 Standard Library

6.10 I1C Peripheral Functions

Starting with version 2.0 of the TICKit interpreter, Generic 12C bus operations are supported for
limited peripheral connections using the existing clock and data lines. These lines, which connect to
the EEprom and also be used to connect to 12C peripherals with compatible command protocols. Such
adevice is the Protean X-Tender device. When placing additional peripherals on the 12C bus wires,
care must be used to ensure the electrical requirements of the 400k bit per second connection are
conformed to. This may require 10k ohm terminations on the physical ends of the lines, special
routing of the lines, and special logical address selection of the devices sharing the line. All devices
must conform to the three byte or four byte protocol specifications:

1. Address Byte: bitO=R/W, upper seven bits must be a unique device address

2. Command Byte: This byte command the addressed device to do something

3. Data Byte(s): The byte(s) is either read or written on the basis of the Address byte bit0. This
isusually a parameter for acommand, or the result of the previous command. If the function
isaword function, the low byte is sent first.

4. In Read operations, the above protocol is modified. If the R/W bit of the address byte is O, the
address and command bytes will be sent but a re-start will be issued instead of any data
transfere following the command byte. If the R/W bit is set, the address and command bytes
are skipped and only the following occurs.

5. The address byte is sent with the R/W bit set.

6. Data Byte(s): The single or double byte (TICkit 57 only for double byte) data is received by
the TICKkit. The TICKit can be paused by the sending device holding the clock for the first
data bit of transfer. The sending device must not hold the TICkit for longer than the internal
watchdog timer (approx 16ms) or a TICKit reset may occur.

Three functions implement this protocol. The user must ensure that the address bit is set appropriately
for reading or writing. Additionaly, notice that the Address/command word used in all of the 12C
functions is a passback parameter. If there is an error communicating to an 12C device, the upper byte
of the Address/command word is cleared. The Interpreter will attempt to communicate with a device
for approximately 16ms (or more if a prescaler is used with the internal watch dog timer) before
clearing the address byte and continuing past the 12C function.

i2c_write Write a command and data byte to bus

none i 2c_wite(word addr_comm byte data) token.lib
This function will write a byte to the addressed device. The address and command bytes are
concatenated to form the addr_comm byte. The exact address and command will vary from
one peripheral device to another.
The address byte of addr_comm will be cleared if the function fails. The word data version
of this function is only available in the TICkit57

Protean Logic 116

6 Standard Library FBASIC TICKit

i2c_read Read a byte from an addressed device

byte i2c_read(word addr_comm) token.lib
This function will transmit an address and a command, then wait to read back a byte from
the addressed device. The exact protocol used in this function depends upon the level of the
R/W bit of the device address. If the R/W bit islow (write level) an address byte and
command byte will be sent before the data read is performed. The address byte of
addr_comm will be cleared if the function fails.

12C 1/O Examples:

=(wite_addrcomm 0x80c2w)
i2c_wite(wite_addrcomm O0x8b) ; select A/D channel 0
; on |1 2C Xtender periph.

IF <(wite_addrcomm 256w)

call i2c_error() ; handle error with [2C
ELSE

=(in_voltage, i2c_read(0x80c2w)) ; read vol tage
ENDI F

6.11 Parallel Bus And Lcd Functions

The busfunctions implement alimited traditional parallel microprocessor bus. This bus may have
either 8 or 4 data lines and may have up to 6 address lines for a total address space of 32 read and 32
write locations. Bus configurations with 4 lines can be made to write 8 bit values by sending two 4 bit
values in succession. This works with LCDnodules that support 4 bit nibble modes. Before any bus
transfer, the bus routines must be set up with a special control byte. The upper two bits of this byte
define the mode of the bus. Bit 7 determines if the data busis 8 lineswide or 4 lines wide. Bit 6 has
meaning only for 4 bit buses and determines if 8 bit values are to be sent on the bus by automatically
sending two nibbles for every 8 bit value. The remaining bits of the control byte (bit O through bit 5)
determine which of the address lines to use for bus operations and which lines to leave as general
purpose I/O. If the busis 4 lines wide only pins D4 through D7 are used for bus operations. Any of
these bits that are high indicate that the corresponding address pin should be used to bus operations.
Between bus operations, all selected address pins are set to alow level, effectively addressing location
0x00.

Data lines may be used for general purpose I/0O between bus operations provided that the bus is set up
again before the next bus operation.

The lower three address lines (A0 thru A2) maintain their levels longer than the upper address (A3
thru A5) lines. This prevents any race conditions that may exist between device selecting logic and
the R/W, data lines, and the device select lines. For this reason, The lower three lines should be used
as register select lines while the upper address lines should be used to select between devices on the
bus. The meanings of the upper address lines combined with the fact that the address of zero is used
as the "deselect” means that locations 0x00 through 0x07 should not be used by any devices on the
bus. Map all address decoding to select device by requiring at least one of the upper address lines (A3
thru A5) to be high.

117 Protean Logic

FBASIC TICKit 6 Standard Library

Some common LCD functions are documented here. These functions are contained in the libraries
mentioned in their prototype. These functions assume the pressence of three defined symbols. Symbol
lcd_bus mask specifies which of the address lines are to be used by bus functinos. Symbol

Icd_data reg specifies the bus address for the data register. Symbol lcd_cont_reg specifies the bus
address for the control register of the LCD module.

buss_setup Setup address and data pins for bus 1/O

none buss_setup(byte node_and_nask) token.lib
Sets up the external bus routines. the mode_and_mask specify what the data bus width will
be, if 4 bit wide how may nibbles to send, and which lines from the address port to dedicate
to use as address lines. Bit 7 specifies the width of the data bus. A high indicates that all
eight lines of the data I/O port are dedicated to bus functions. A low indicates that only bits 4
through 7 are dedicated to bus functions. Bit 6 isignored for 8 bit operations but indicates
how many nibbles to send for each bus function if the data busis 4 bit. A high in bit 6 causes
all bus functions to perform two 4 bit nibble transfers for every operation to transfer a
complete 8 bit byte. If bit 6 islow, only bits 4 through 7 of any bus read or write operation
will be transferred. Bits O through 5 of mode_and_mask are used to reserve /O lines of the
address port for bus address lines. If any of these bits are high, the bits will be used to select
devices on the bus during read and write operations. Any bits of mode_and_mask that are
low are unaffected in future bus read/write operations. All bus read or write operations effect
pin 6 of the address port. Thislineis used as the read/write line for the address bus. Thisline
isnormally a high output after bus_setup but is brought low during bus write operations.
Items on the address bus are selected whenever their address is placed on the used address
port lines. Whenever a bus operation is not taking place, all used address lines are brought
low. This effectively selects bus address zero. Therefore, no devices on the address port can
be mapped to address zero.

buss read Read abyte from bus address

byte buss_read(byte address) token.lib
Reads a byte from the external bus at the specified address. Read method will conform to the
current bus setup. Unused address or data /O lines will not be affected by this function.

buss_write Write byte to bus address

none buss_wite(byte addr, byte data) token.lib
Writes a byte to the external bus at the specified address. Writes conform to the current bus
setup. No unused address or data I/O lines are affected by this function.

lcd_init4 Initializes an LCD module for 4 bit data bus

none lcd_ init4() lcdinitd. lib
This function sets up the TICkit bus and sends the necessary commands to initialize a 44780
based LCD module for 4 bit data transfer.

Protean Logic 118

6 Standard Library FBASIC TICKit

lcd_init8 Initializes an LCD module for 8 bit data bus

none lcd init8() lcdinit8.1ib
This function sets up the TICkit bus and sends the necessary commands to initialize a 44780
based LCD module for 8 hit data transfer.

lcd_cont_wr Writes a byte to LCD control register

none |l cd _cont_w(byte control) Icdsend.lib
Use this function to write to the control register of a 44780 based LCD module. This function
automatically ensures previous command is complete.

lcd _data_wr Writes a byte to LCD data register

none |l cd data w(byte data val) Ilcdsend.lib
Use this function to write to the data register of a 44780 based LCD module. This function
automatically ensures previous command is complete. The data register is either character
generator data or display data depending on the last write to the control registers address
control.

lcd_string Writes a string to the LCD

none lcd_string(word string_addr) lcdstrin.lib
This function writes a string of bytes to the LCD from alocation in EEprom. The string must
be null terminated. No control characters are acted upon.

lcd_out Writes a number to the LCD

none | cd_out(byte value) lcdbyte.lib
none | cd_out(word value) lcdword.lib
none lcd_out(long value) lcdlong.lib

This function writes a number to the LCD screen. Three versions of this routine write either
a byte, aword or along value to the LCD.

lcd_fmt Writes a formatted long to the LCD

none lcd fm(long value, word form) lcd fn.lib
This function writes a formatted number to the LCD screen. The format is determined by a
string contained in EEprom (pointed to by argument form). Each character in the format
string cooresponds to a digit. The character meanings are as folllows:

$ Print a'$' character in the output

Print a number if this or a previous digit was non-zero
0 Print a number even zero, forces following #'s to print
X Do not print a number digit, but account for its position

Print a decimal point

119 Protean Logic

FBASIC TICKit 6 Standard Library

Bus /O Examples:

; Check that LCDis ready to receive data and wite
; assume LCD is already initialized

FUNCTI ON none lcd wite
PARAMETER byt e | cd_out

BEG N
VWH LE >(bus_read(lcd_cont_reg), 0x80b)
LocP

bus wite(lcd data_reg, |cd_out)
ENDFUN

6.12 Timingand Counting Functions

The TICkit has no built in time keeping capability except for the microprocessor clock. However, by
executing a known number of PIC instructions, a delay of known duration can be caused. This
delaying technique is used to produce the time base for the following functions.

In addition to the delaying technique, the TICkit can take advantage of the PIC's internal RTC(eal
time clock counter) to count rising or falling edges on the RTCC input, or to count machine clock
cycles. The mode of the RTCC is set by using the "rtcc_" functions.

One additional capability of the PIC is used to generate longer delays and reduced power operation.
Each PIC has a built in watchdog timer. This timer is a crude internal RC circuit that will reset the
PIC if the Capacitor is not recharged before it is fully discharged. The watchdog timer is unavailable
as a seperate user controlled resource, but is used by the interpreter for trapping unexplained errors
like 12C timeout or for use with the sleep functions. This method of timing is relatively imprecise, but
isstill useful for creating alow power dlay. The sleep function uses this method.

delay Delay processing for milliseconds

none del ay(word mllisecond) token.lib
Delays program execution for the specified number of milliseconds.

Protean Logic 120

6 Standard Library FBASIC TICKit

sleep Delay processing and conserve power for atime

none sl eep(byte sleep periods) token.lib
Puts the processor to sleep for the specified amount of sleep periods. Each period is
nominally 18ms. This function, due to internal PIC organization, will modify the RTCC
edge and source settings. NOTE: the time base for this function is an internal RC discharge
rate and is affected by temperature and environmental conditions like the characteristics of
the IC or supply voltage variations. The base delay of thisfunction istypically 18ms at 25
degrees C, but can vary between 9ms and 30ms. Note: it is possible to assign the RTCC
prescaler to the sleep timer using custom OPERATION directives not contained in the
standard library. Thiswill dramatically increase the sleep interval. If you really want to do
this, examine the token library and observe how the rtcc_int_256 and rtcc_ext_rise
operations are created. These operations simply set the PIC OPTION register.

rtcc_get Get the current count of the RTCC register

byte rtcc_get() token.lib
Reads the 8 hit contents of the RTCC register.

rtcc_set Setthe count of the RTCC register

none rtcc_set(byte count) token.lib
Sets 8 bit value, "count” into the RTCC register.

rtcc_int RTCC source is internal clock
none rtcc_int() token.lib
Sets the source for the RTCC to be the internal clock. Thisis the oscillator frequency divided
by 4. This clock isinactive during sleeps.

rtcc_int_16 RTCC source internal and prescaled by 16
none rtcc_int_16() token.lib
Sets the source for the RTCC to be the internal clock. Thisis the oscillator frequency divided
by 64. This clock isinactive during sleeps.

rtcc_int_256 RTCC source internal and prescaled by 256
none rtcc_int_256() token.lib
Sets the source for the RTCC to be the internal clock. Thisis the oscillator frequency divided
by 1024. This clock isinactive during sleeps.

rtcc_ext_rise RTCC source is external clock

none rtcc_ext _rise() token.lib
Sets the source for the RTCC to be the external pin and clocks on the rising edge of any
signal on this pin. This pin should be tied high or low if not used.

121 Protean Logic

FBASIC TICKit 6 Standard Library

rtcc_ext_fall RTCC source is external clock

none rtcc_int() token.lib
Sets the source for the RTCC to be the external pin and clocks on the falling edge of any
signal on this pin. This pin should be tied high or low if not used.

rtcc_count Count while delaying for milliseconds

byte rtcc_count(word mlliseconds) token.lib
Clears the RTCC register then counts pulses in the RTCC while the TICkit delays for n
milliseconds. The 8 bit contents of the RTCC is returned after the delay. Thisfunction is
useful for determining frequency of an AC signal up to about 50kHz.

rtcc_wait Wait until RTCC count rolls over to zero

none rtcc_wait() token.lib
TICkit execution will pause until the RTCC register rolls over to a count of zero. This
function can be used in conjunction with RTCC_SET and RTCC_INT_256 to implement a
real time clock. By setting the RTCC count before a section of program is executed and then
waiting for the RTCC count to roll over to zero following the program segment, the
programmer can ensure the segment will take the same amount of time to execute for each
timeit is executed. This makes it possible to create real time loops.

Timing Examples:

; determne the frequency of an input square wave
; using the RTCC

FUNCTI ON wor d freq_get
BEG N
rtcc_ext_rise() ; rising edge-external
=(exit_value, rtcc_count(100))
; count pul ses for 100ns
; measures between 0 and 2550 Hz signals to
; the nearest 10 Hz.
ENDFUN

6.13 RS232 and Communications Functions

The PICs used by the TICkit57 and TICkit62 have no serial communications hardware built into
them. Therefore, the token interpreter uses special software operations in the TICkit to simulate
asynchronous serialcommunications hardware. This software relies on loops of PIC instructions to
generate the timebase for the serial timing. This method does not produce the exact timing for the
standard baud rates but produces acceptable results for rates from 300 to 9600 baud with a4mHz PIC
clock and 300 to 19200 baud with a 20 mHz PIC.

The routines also support atrue and an inverted input/output through a general purpose 1/0 pin. All
these parameters are set with a special parameter byte. Bit 7 of this bit indicates if the communication
isinverted (bit7=1) or if the communications are true (bit7=0). Bits 4 through 6 determine the baud

Protean Logic 122

6 Standard Library FBASIC TICKit

rate where 000=300 baud and 110=19200 baud. Bits 0 through 3 determine which general purpose
I/O pin to use where 0000 is pin DO, 1000 is pin AQ, and 1111 isthe DL pin (which is used for
debugging purposes also).

One additional parameter can be specified using the rs_stop_chek and rs_stop_ignore functions. If
set to ignore, the stop bit of any value received from the serial communication is not to be tested for
framing accuracy. This provides one additional bit of time for processing consecutive data received
through the serial port, but does not allow the detection of aframing errors or break levels.

Special care must be exercised when using the serial receiving routines. The routines must be
executing when data is transmitted from the sending device, otherwise the startbit will not be sensed
and either no information or erroneous information will be received. This introduces an unavoidable
timing problem for bursts of more than one byte of information to be received through the serial
functions. Any processing of the byte just received must take place in one half bit time (or 1.5 bit
time if the stop bit is not sensed) to ensure that the next byte will be received intact. This provides
very little time for processing at high baud rates.

The TICkit57 has only a single byte receive routine for RS232. The TICkit62 has a multi-byte buffer
and can receive up to 128 bytes of serial in ablock (128 is atheoretical limit, in actual use, some of
the TICkit memory will be used for processing and stack. On the TICkit62, 64 bytesis probably the
maximum buffer than can be used for serial blocks).

The TICkit62 assumes that a message format will be used frequently on the TICkit. Thisis
accomidated by features in the recblock function that wait for break levels or a specific address byte
before actually capturing serial data. Also, the TICKkit 62 can generate handshaking signals for a
normal serial stream. Whenever the buffer gets full, the handshake line will change level and signal
the transmitting device to pause while the the TICkit digests the buffer information.

rs_param_set Set RS232 parameters

none rs_paramset(byte type baud_pin) token.lib
Setup baud rate and pin number for serial RS232 communications. This function also sets
the pin level meanings. Bit 7 of type baud pin determines if the communications signal is
inverted and open sourced, or if it is true and totem pole. If bit 7 is high, the signal is
inverted and the driver is open sourced when transmitting which means the line must be
pulled low. If bit 7 is low, the signal is true and the transmit driver is a totem pole
configuration. A totem pole configuration should not be "wire-ored" to prevent stressing the
output electrically. Bits 4 through 6 determine the baud rate of the communications routines.
A value of 0in these bits selects a 300 baud rate. A value of 14 selects a 19,200 baud rate.
All baud rates in between follow the same doubling pattern. Bits O through 3 determine the
pin for communications where O is dataline 0 and 15 is address line 7. The standard console
and debug parameter is a setting of OxDF (Inverted, 9600 baud, pin 15-address line 7).

123 Protean Logic

FBASIC TICKit 6 Standard Library

rs_break Send RS232 break condition
none rs_break() token.lib

Sends a break condition for the baud rate and pin specified by the rs_parameter. This
function literally sends a space level for 13.5 bit times.
A break condition is technicaly a space level for at least 10 consequtive bit times. Normally,
because rs232 consists of a start bit, 9 data bits, and at least on stop bit, no more than 9
consequtive space levels should occur before amark level. Since an idle rs232 line is at mark
level, a break condition will never occur as long as normal communication is taking place.
Historically, break conditions were used to communicate a piece of information which is
extraordinary to the normal data stream. The name "break” is derived from time share
systems in which a break condition was used to interrupt the remote computer's program
execution and return to an OS prompt. Breaks are also used to indicate the beginning of data
frames etc. in serial packet protocols. Most asynchronys receivers interpret a break as a
framing error with a data result of 0. By testing for this condition, breaks can be detected and
used to advantage. The TICKkit62 can use a break condition as a prefix for an address bytein
the rs_recblock function.

rs_param_get Get RS232 parameters
byte rs_paramget() token.lib

Reads the current output type, baud rate, and pin number for serial RS232 communications.
Seethers_param_set function for more details.

rs_send Send byte out RS232 pin (TICKit57)
none rs_send(byte data, byte brk) token.lib
Send the value "data" out conforming to the RS232 timing standards. Input and output
levels, aswell as baud rate and pin are determined by the current contents of the rs_param
register. A non-zero value for "brk" will cause an incorrect stop bit level to be sent, which is
interpreted by most receivers as either a framing error or a break condition.

rs_send Send byte out RS232 pin (TICKit62)
none rs_send(byte data) token.lib
Send the value "data" out conforming to the RS232 timing standards. Input and output
levels, aswell as baud rate and pin are determined by the current contents of the rs_param

register. Break conditions can be generated using pulse functions or pin functions and timing
delays.

Protean Logic 124

6 Standard Library FBASIC TICKit

rs_receive Receive byte in RS232 pin (TICKit57)

byte rs_receive(word wait, byte err) token.lib
Receive a byte through a general purpose 1/O pin. Input and output levels, as well as baud
and pin information are determined by the current contents of the rs_param register. This
function will wait approximately (16us * wait) for a start bit before returning an error. A
zero value for wait, or a value greater than 65280 will cause an indefinite wait for a start bit.
Error codes are: 0 = no error, 1=framing error (break), 2=timeout for start, 4=no initial mark
level.

rs_receive Receive byte in RS232 pin (TICKkit62)

byte rs_receive(byte wait, byte control, byte err) token.lib
Receive a byte through a general purpose 1/O pin. Input and output levels, as well as baud
and pin information are determined by the current contents of the rs_param register. This
function will wait approximately (4096us * wait) for a start bit before returning an error. A
zero value for wait produces an indefinite wait for a start bit. The control byte is used to
select a general purpose pin for handshake (lower four bits) and to enable handshaking by
setting bit 4. Error codes are: 0 = no error, 1=framing error (break), 2=timeout for start,
4=no initial mark level.

rs_rechblock Receive array of bytes in RS232 pin
byte rs_receive(byte wait, byte control, byte address, ~

~byte buffer[], byte buf_size) token.lib
Receive a block of bytes through a general purpose 1/0 pin. Input and output levels, as well
as baud and pin information is determined by the current contents of the rs_param register.
This function will wait approximately (4096us * wait) for a start bit before returning an
error. A zero value for wait will cause an indefinite wait for a start bit and indefinate wait for
all charactersin amessage. The return value indicates if there was an error, and if so how
many characters were received. If the return value is 0, no errors occured and the entire
block was received. If an error occurs, the return value will be 128 les the number of bytes
not received.

The address byte is the byte to match before bytes are captured into the buffer. The buffer is
an array of bytes that must be at least as large as buf_size to prevent adjacent memory from
being overwritten. The rs_recblock function will continue to capture serial data until either
the function times out or the buffer isfilled.

125 Protean Logic

FBASIC TICKit 6 Standard Library

The control parameter contains information about handshake, block qualifying and
message timing. The lower four bits of the control byte are the handshake pin. If bit 7, the
most significant bit is set, the rs_recblock will wait for a break on the line before receiving a
block. If bit 6 is set, rs_recblock will wait for a byte that matches the address byte before
receiving the block. If bit 5 is set, rs_recblock will wait for 32*buf_size character attempts
otherwise rs_recblock will wait for 8*buf_size character attempts. If bit 4 is set, rs_recblock
will assert the handshake line, otherwise the handshake pin will remain unchanges by
rs_recblock. In order for proper break detection to work, the RS system must be set to check
the stop bit using rs_stop_chek function.

rs_string Send a string of bytes out RS232 pin

none rs_string(word string_addr) rs_str62.1ib, rs_str57.1ib
This function sends a string of characters located in EEprom out of a general purpose pinin
RS232 serial format. The pin, baud_rate, and levels are defined by the rs_param_set
function. The string must be null-terminated.

rs_delay Delay one and one half RS232 bit times

none rs_delay() token.lib
Delay one and one half bit time. Use this function to produce the minimum required delay
when sending a serial byte on the same pin just used to receive serial information. This delay
isrequired to prevent a framing error or data overrun. Additional time delay may be required
if the sending device will need to do any processing before being ready to receive serial data.
The baud rate used to calculate the delay time is contained in the rs_param register.

rs_stop_chek Set RS232 stop bit protocol on
none rs_stop_chek() token.lib
This function causes the level of the stop bit to be checked after each RS232 byte is received.
Framing errors can only be detected by checking the stop bit. Additional timeis required to
check the stop bit, however. Some programs may wish to ignore the stop bit to gain more
time for handling continuous serial information.

rs_stop_ignore Set RS232 stop bit protocol off
none rs_stop_ignore() token.lib
This function causes the level of the stop bit to be ignored after each RS232 byte is received.
Additional time for processing continuous serial information is available by ignoring the stop
bit. Framing errors can only be detected by checking the stop bit, however.

rs_fmt Sends aformatted long out RS232 pin

none rs_fm(long value, word form) rs_fm57.1ib, rs_fnm62.1ib
This function formats the long argument value into a string of characters on the basis of the
string form. This function allows control of leading and trailing zeros, decimal point
placement, and dollar sign. The format string is a null terminated string contained in
EEprom. The characters that have special meaning are as follows:

Protean Logic 126

6 Standard Library FBASIC TICKit

$ Print a'$' character in the output

Print a number if this or a previous digit was non-zero
0 Print a number even zero, forces following #'s to print
X Do not print a number digit, but account for its position

Print a decimal point
Examples:
listen for a break with this node's address

FUNCTI ON none wai t _addr
LOCAL byte errorval
LOCAL byte rs_buffer[32]

BEG N
rs_stop_check() ; test stop bit for valid
rs_paramset (rs_invert | rs_2400 | pin_a2)
; inverted, 2400, pin 10
REP
=(errorval, rs_recbl ock(100b, ~
~rs_cont_brk | rs_cont_addr | rs_cont_wait, ~
~'"A, rs_buffer, 32b))
IF errorva
ELSE
; message recei ved K
proc_pack() ; process serial packet
ENDI F
LocP
ENDFUN

6.14 Console Functions

The console functions use the internal serial 1/0 routines of the token interpreter to communicate to a
consolecomputer. The console functions use the information contained in the rs_param_byte to
determine which pin, baud rate, and line levels to use for the communication. To communicate with
the supplied software, the line must be inverted, and the baud rate must be 9600 baud. Furthermore,
to use the debugger console, only pin 15 (DL) can be used for the console pin.

The console functions perform special handshaking to ensure that the TICKit is listening while the
console sends data to it. Therefore, these routines should not be used to send non-TICkit protocol
serial information. Use the serial communications functions listed above for that purpose.

con_test Test for the existance of a console
byte con_test() token.lib
Returns zero to indicate a console listening on the console pin. Any other value returned
indicates that no console is listening.

127 Protean Logic

FBASIC TICKit 6 Standard Library

con_in_char Get acharacter from console (TICKit57)

byte con_in_char(word wait) token.lib
Get an ASCII character from the console. The "wait" value indicates that the function should
wait for only wait* 16us interval. This produces a maximum delay of approximately one
second. A zero for wait, or avalue greater than 65280 will cause the function to wait
indefinitely for input. Any characters typed on the console are not echoed locally by the
console.

con_in_char Get a character from console (TICkit62)
byte con_in_char(byte wait) token.lib
Get an ASCII character from the console. The "wait" value indicates that the function should
wait for only wait*4096us interval. This produces a maximum delay of approximately one
second. A zero for wait causes the function to wait indefinitely for input. Any characters
typed on the console are not echoed locally by the console.

con_in_byte Get a byte from the console (TICkit57)
byte con_in_byte(word wait) token.lib
Get avalue of size byte from the console. This function waits the same as the con_in_char
function. Digits typed on the console while entering the number are echoed locally within
console.

con_in_byte Get abyte from the console (TICKit62)
byte con_in_byte(byte wait) token.lib
Get avalue of size byte from the console. This function waits the same as the con_in_char
function. Digits typed on the console while entering the number are echoed locally within
console.

con_in_word Get aword from the console (TICkit57)

word con_in_word(word wait) token.lib
Get avalue of size word from the console. This function waits the same as the con_in_char
function. Digits typed on the console are echoed locally.

con_in_word Get aword from the console (TICkit62)

word con_in_word(byte wait) token.lib
Get avalue of size word from the console. This function waits the same as the con_in_char
function. Digits typed on the console are echoed locally.

con_in_long Getalong from the console (TICkit57)

long con_in_long(word wait) token.lib
Get avalue of size long from the console. This function waits the same as the con_in_char
function. Digits typed on the console are echoed locally.

Protean Logic 128

6 Standard Library FBASIC TICKit

con_in_long Getalong from the console (TICkit62)
long con_in_long(byte wait) token.lib
Get avalue of size long from the console. This function waits the same as the con_in_char
function. Digits typed on the console are echoed locally.

con_out_char Send a byte character to the console

none con_out _char(byte data) token.lib
Send an ASCII character to a console. The byte "data" is sent to the console with instructions
to the console to display it as an ASCII character.

con_out Sends anumeric value to the console

none con_out(byte data) token.lib

none con_out(word data) token.lib

none con_out(long data) token.lib
The value "data" is displayed on the console in decimal format. Long values are signed using
the two's complement convention.

con_string Send a string of bytes out console pin

none rs_string(word string_addr) cn_str.lib
This function sends a string of characters located in EEprom out of a general purpose pinin
console serial format. The pin, baud_rate, and levels are defined by the rs_param_set
function. The string must be null-terminated. The Debugger can recieve this type of signal.

con_fmt Sends aformatted long to the console

none con_fn(long value, word format) cn_fn.lib
This function formats the long argument value into a string of characters on the basis of the
string format. This function allows control of leading and trailing zeros, decimal point
placement, and dollar sign. The format string is a null terminated string contained in
EEprom. The characters that have special meaning are as follows:

$ Print a'$' character in the output

Print a number if this or a previous digit was non-zero
0 Print a number even zero, forces following #'s to print
X Do not print a number digit, but account for its position

Print a decimal point

129 Protean Logic

FBASIC TICKit 6 Standard Library

Examples:

; test for a console and add two signed nunbers

FUNCTI ON none mnain
LOCAL | ong val 1
LOCAL | ong val 2
BEG N
rs_paramset(debug_pin)
IF not(con_test())

=(vall, con_in_long(0))
=(val2, con_in_long(0))
con_out(+(vall, val2))
ENDI F
ENDFUN

6.15 System, Interrupt and Miscellaneous Functions

The system functions are used to break or re-establish communication with the debuggén control

the interrupt detection, and to reset the TICkit under software control. Using the debug_on() function
while developing a program can be a very useful method of tracing a program. Often, the
programmer is only wishing to trace a small section of a program. By placing the debug_on()
function at the beginning of the section, the user can allow the program to operate at full speed until
it reaches the desired section, then the user can single step or watch variables for just the codein
guestion. When done tracing that section, the user can press 'E' of the debugger and the code will
again execute at full speed. Thisis often much faster than running a program in monitor code while
looking for a break point.

The interrupt capability of the TICKkit allows a special function in the program to be called at the
request of an external device. Provided that the interrupts have been enabled, when the /IRQ input
line of the TICKit is brought low, immediately after the current TICkit token finishes executing, the
function named IRQwill be executed (vectored at EEpromocation 0x0002 and 0x0003). The
interrupt is disabled as the IRQ function is called. Therefore, the program must re-enable it to sense
any additional interrupts. Usually the interrupts are re-enabled as the last line of the IRQ routine. The
TICkit62 has the added interrupt capability to sense multiple events caused by internal hardware
stimulus. For example, an interrupt can be generated when the Timer1 16bit counter rolls over. This
interrupt is useful to implement areal-time clock in background. For the TICkit62 there are three
interrupt vectors:

1. /IRQ pin input - when line is brought low and interrupt occurs (57 and 62)
2. Stack overflow - when RAM memory is exceeded this interrupt occurs (62)
3. Internal peripheral - when a pre-programmed peripheral condition occurs (62)

The names of the functions call by each of these vectorsis defined in the token library for each
processor. By default they are: "irq", "stack_overflow", and "global_int" respectively.

Protean Logic 130

6 Standard Library FBASIC TICKit

The internal peripheral interrupt (global_int) can be caused by multiple event sources. To help limit
what events can cause this interrupt, and to determine what event caused an interrupt while servicing
it, mask registers and flag registers are used. Each bit of the mask and flag registers coorespond to an
event source. An event source will cause an interrupt only if its cooresponding mask bit is set,
otherwise that source isignored. Likewise, if multiple event sources are allowed to generate the
interrupt, the servicing routine will need to determine which source caused this interrupt. Thisis done
by examining the contents of the flag registers. Only the event which caused the interrupt will have
its cooresponding bit set. Also, the flag for the interrupt source will need resetting at the end of the
interrupt service routine.

debug_on Turn debug protocol on
none debug_on() token.lib

Attempts to establish a connection to a debugger on the console computer. The TICKit will
try to establish this connection for approximately 1.5 seconds.

debug_off Turn debug protocol off
none debug_off() token.lib

Terminates the debug connection with the console. Forces the program to execute in fast,
un-monitored mode.

irg_on Turn interrupt sensing on
none irqg_on() token.lib

Enables the Interrupt Service Requests. A low level on the /IRQ line will cause execution to
resume at the function named "IRQ" immediate following the execution of the current token.
Because the interrupt service flag is disabled by each service request, the service request
routine will normally re-enable interrupts on exit by executing this function. This function
also enables hardware interrupt processing on the TICkit62. Therefore, when using this
function, be sure that all internal global interrupts are disabled, or the appropriate
"global_int" function exists for handling TICkit62 interrupts.

irqg_off Turn interrupt sensing off
none irq_off() token.lib

Disables the Interrupt Request line. Use this function to prevent any interrupt from
distracting the TICKkit from atime sensitive program.

reset Resets the token interpreter

none reset() token.lib
Simulates a power on start.

131 Protean Logic

FBASIC TICKit 6 Standard Library

int_cont_set Sets control byte for global_int (TICkit62)

none int_cont_set(byte control _bits) token.lib

This function sets the bits of the TICkit62's global interrupt control register. This register
contains the status and mask of several interrupts and also masks the peripheral interrupts.
The bit assignments for the interrupt control register are as follows (standard defines for
these detailed in the DEFINES section) :

bit 0 = Set if bits 4 thru 7 of the Data Port have changed.

bit 1 = Set if bit O of the Data Port has received an edge.

bit 2 = Set if RTCC (tmr0) has overflowed.

bit 3 = Enable Data port bits 4-7 change interrupt

bit 4 = Enable Data port bit 0 edge interrupt

bit 5 = Enable RTCC (tmr0) overflow interrupt

bit 6 = Enable peripheral interrupt sources.

bit 7 = Unused, must be set to zero.

int_cont_get Gets control byte for global_int (TICkit62)
byte int_cont_get() token.lib

This function gets the bits of the TICkit62's global interrupt control register. This register
contains the status and mask of several interrupts and also masks the peripheral interrupts.

int_flag_set Sets Peripheral Flag byte (TICKit62)

none int_flag set(byte flags) token.lib

This function sets the bits of the TICkit62's peripheral interrupt flag register. This register
contains the status of peripheral interrupts. Usually, this function is simply used to clear a
serviced interrupt. Defines for each bit's meaning are listed in the DEFINES section of this
chapter. The bits are as follows:

bit 0 = Timer 1 overflow.

bit 1 = Timer 2 overflow.

bit 2 = CCP1 module interrupt (Capture or Compare)

bit 3 = SSP module (12C port 1/0)

bit 4 = not used

bit 5 = not used

bit 6 = not used

bit 7 = not used

int_flag_get Gets Peripheral Flag byte (TICKit62)
byte int_flag get() token.lib
This function gets the bits of the TICkit62's peripheral interrupt flag register. This register
contains the status of peripheral interrupts. This function is used to determine which
peripheral interrupts are pending and need service.

Protean Logic 132

6 Standard Library FBASIC TICKit

int._ mask_set Sets Peripheral Mask byte (TICKit62)
none int_mnask set(byte mask) token.lib
This function sets the bits of the TICkit62's peripheral interrupt mask register. This register
contains the masks of peripheral interrupts. Only the devices which their bits set will
generate an interrupt. Bits map the same as the peripheral flag register.

int_mask_get Gets Peripheral Mask byte (TICKit62)
byte int_nask get() token.lib

This function gets the bits of the TICkit62's peripheral interrupt mask register. This register
contains the masks of peripheral interrupts.

Examples:

; handle an interrupt - also uses debug on to create a type
; of fast break point. Programexecutes at full speed until

; debug_on.
FUNCTI ON none irq ; this irq handler will display the
; string then connect to a debugger
; if it is present, then, under debug
; control, return to the main process.
BEG N
con_string("responding to interrupt\r\[l");
debug_on()
irg_on()
UN
FUNCTI ON none main
BEG N
rs_paramset(debug_pin)
irg_on()
REP
LocP
ENDFUN

6.16 Peripheral Control Functions

The processors on which the FBASIC interpreters are implemented have special 1/0 resources for
performing more complex tasks. These resources, called peripherals, can operate while the main
processing function is doing something else. The TICkit 57 has the RTCC (Tmr0) asits only
peripheral device. As an example, the RTCC can count pulses or clock cycles while the program
continues to operate. The Functions used to control these devices would not normally be considered
part of a standard library. However, because of the inteded use of the processors for control
applications, the functions controlling the peripherals are assumed to be central to the task. For this
reason, peripheral control functions are included in FBASIC's standard library. Because the

133 Protean Logic

FBASIC TICKit 6 Standard Library

availability of peripheralsis very processor dependent, be sure to code with only the resources of the
processor you will eventually use.

The TICkit 57 has only the RTCC for a peripheral. It's functions are outlined in the timing section of
this chapter.

The TICKit 62 has the RTCC timer, but it also has two more timers, a module which can be
programed to compare the count in timer 1 with a preset value and interupt the processor on a match,
or it can capture the count of timer 1 when the CCP pin is activated, or it can use timer2 to generate a
10bit PWM signal and output that signal on the CCP pin. The TICkit 62 also has an SSP (synchronys
serial port) for use as an 12C port. All of these resources are controlled by writing special control and
data registers. Once setup, the peripheral devices operate in background while the program proceeds.

tmrl _cont set Sets TMRL1 control register (TICKit62)

none tnrl cont_set(byte control _bits) token.lib
This function sets the bits of the TICkit62's timer 1 control register. The meanings of the bits
of this register are as follows:
bit 0 = Enables timerl counter
bit 1 = When set clk is AO pin, otherwise clk is OSC/4
bit 2 = Synchronizes clk with OSC when set
bit 3 = Enables oscillator circuit on A0 and A1
bit 4 = Bits 4 and 5 select prescale value of 8(11), 4(10),
bit5= 2(01) or 1(00)
bit 6 = not used
bit 7 = not used

tmrl_cont get Gets TMR1 control register (TICKit62)

byte tmr1l _cont_get() token.lib
This function gets the bits of the TICkit62's timer 1 control register.

tmrl_count set Sets TMR1 count (TICKit62)

none tnmrl count_set(word count) token.lib
This function sets the count of the TICkit62's timer 1.

tmrl _count get Gets TMR1 count (TICKkit62)

word tnrl cont_get() token.lib
This function gets the count of the TICkit62's timer 1.

tmr2_cont set Sets TMR2 control register (TICKit62)

none tnr2_cont_set(byte control _bits) token.lib
This function sets the bits of the TICkit62's timer 2 control register. The meanings of the bits
of this register are as follows:
bit 0 = Bits 0 and 1 select prescale value of 1(00), 4(01)

Protean Logic 134

6 Standard Library FBASIC TICKit

bit1= or 16(1x)

bit 2 = Enables timer 2 counting

bit 3 = Bits 3,4,5, and 6 select the postscal e divisor
bit4= 0000 isdivideby 1

bit5= while1111 isdivide by 16

bit 6 = Therefore, divisor = postscale setting + 1
bit 7 = not used

tmr2_cont get Gets TMR2 control register (TICKit62)

byte tmr2_cont_get() token.lib
This function gets the bits of the TICkit62's timer 2 control register.

tmr2_count set Sets TMR2 count (TICKkit62)

none tnr2_count_set(byte count) token.lib
This function sets the count of the TICkit62's timer 2.

tmr2_count get Gets TMR2 count (TICkit62)

byte tmr2_count _get() token.lib
This function gets the count of the TICkit62's timer 2.

tmr2_period set Gets TMR2 period register (TICKit62)

none tnr2_period_set(byte period) token.lib
This function sets the contents of the TICkit62's timer 2 period register.

tmr2_period get Gets TMR2 period register (TICkit62)

byte tmr2_period_get() token.lib
This function gets the contents of the TICkit62's timer 2 period register.

ccpl_cont set Sets CCP1 control register (TICKkit62)
none ccpl_cont_set(byte control _bits) token.lib
This function sets the bits of the TICkit62's CCP1 control register. The meanings of the bits

of this register are as follows:
bit 0 = Bits 0,1,2 and 3 select the mode of the CCP

bit1= 0000 = off, 01xx = capture mode
bit 2= 10xx = compare mode, 11xx = PWM mode
bit 3= bits 0,1 modify capture and compare modes.

bit 4 = In PWM mode thisis the lowest order duty bit
bit 5= In PWM mode thisisthe next lowest order bit
bit 6 = not used
bit 7 = not used

135 Protean Logic

FBASIC TICKit 6 Standard Library

ccpl cont get Gets CCP1 control register (TICkit62)

byte ccpl_cont_get() token.lib
This function gets the bits of the TICkit62's CCP1 control register.

ccpl reg set Sets CCP1 register (TICKit62)
none ccpl reg set(word contents) token.lib
This function sets the contents of the TICkit62's CCP1 register. Depending on the mode of
the CCP this can be a comparison value for timerl, aresult of a capture on timerl, or the
lower 8 bits of the CCP1 register are the higher 8 bits of the PWM duty cycle.

ccpl reg get Gets CCP1register (TICKit62)

byte ccpl_reg get() token.lib
This function gets the contents of the TICkit62's CCP1 register.

ssp_cont_set Sets SSP control register (TICKit62)
none ssp_cont_set(byte control _bits) token.lib
This function sets the bits of the TICkit62's SSP control register. The meanings of the bits of
this register are asfollows:
bit 0 = Bits 0,1,2 and 3 select the mode of the SSP

bit1= 01xx = slave only modes
bit 2= 10xx = master support with slave modes
bit 3= See defines for complete mode list.

bit 4 = Clk enable (allows clk to go high)

bit 5 = Enable the SSP (switches control of A3 and A4)
bit 6 = Receive Overflow flag

bit 7 = Write Collision detected

ssp_cont get Gets SSP control register (TICkit62)

byte ssp_cont_get() token.lib
This function gets the bits of the TICkit62's SSP control register.

ssp_buffer set Sets SSP Buffer (TICKit62)

none ssp_buffer_set(byte contents) token.lib
This function sets the contents of the TICkit62's SSP buffer. Effectively, this function is used
to transmit data on the 12C port.

ssp_buffer get Gets SSP Buffer (TICKkit62)

byte ssp_buffer_get() token.lib
This function gets the contents of the TICkit62's SSP buffer. This reads data received from
the 12C port.

Protean Logic 136

6 Standard Library FBASIC TICKit

ssp_addr _set Sets SSP Address (TICkit62)

none ssp_addr_set(byte contents) token.lib
This function sets the contents of the TICkit62's SSP address register. Interupts and data
reception/transmission only takes place after a start bit and a match to this address on the
12C port.

ssp_addr_get Gets SSP Address (TICkit62)

byte ssp_addr_get() token.lib
This function gets the contents of the TICkit62's SSP address register.

ssp_status get Gets SSP Status (TICKit62)

byte ssp_status_get() token.lib
This function gets the contents of the TICkit62's SSP status register. The meanings of the
bits of this register are as follows:
bit 0 = Receive Buffer full (byte in buffer for reading)
bit 1 = Update Address required (place in ssp_address)
bit 2 = Current message is aread message
bit 3 = Start bit was detected last
bit 4 = Stop bit was detected last
bit 5 = Last byte received was a data byte (not an address)
bit 6 = not used
bit 7 = not used

Examples:

Sanpl e programto illustrate using TICkit62 SSP to do

| 2C sl ave operations. Keep in mnd that the master in this
systemmust transmt data with spacing between bytes. If
using a TICkit as the master, use the simi2c library to
generate the signals.

DEF tic62_a
LIB fbasic.lib

G CBAL byte iic_addr Ob
G CBAL byte iic_conm Ob

FUNC none irq

BEG N
irg_on()

ENDFUN

137 Protean Logic

FBASIC TICKit 6 Standard Library

FUNC none gl obal _i nt
LOCAL byte iic_data
BEG N
=(iic_data, ssp_buffer_get())
IF b_and(ssp_stat_get(), ssp_stat_data)
IF iic_comm
con_out _char("\r")
con_out _char("\I")
con_out _char('A)
r

con_out (iic_addr)
con_out _char(' ')
con_out (iic_comm)
con_out _char(' ')
con_out(iic_data)
ELSE
=(iic_comm iic_data)
ENDI F

ELSE
IF b_and(ssp_stat_get(), ssp_stat_read)
ssp_buffer_set(0x18b)
ELSE
=(iic_addr, iic_data)
=(iic_comm Ob)
ENDI F
ENDI F

ssp_cont _set(ssp_node_sl ave7 | ssp_con_cl ken | ~
~ssp_con_enabl e)

int_flag_ set(0Ob)

irg_on()

UN

FUNC none mai n

BEG N
rs_paramset(debug_pin)
int_cont_set(int_con_periphe)
int_mask_set(int_nask _ssp)
int_flag_ set(0Ob)

ssp_addr _set (0x80b)
ssp_cont _set(ssp_node_sl ave7 | ssp_con_cl ken | ~
~ssp_con_enabl e)

irg_on()

REP
LOOP
ENDFUN

Protean Logic 138

6 Standard Library FBASIC TICKit

Examples:

This programwi || generate a square wave of varying duty
cycle on the CCP1 pin. This nethod is used to perform PW/
control of notors etc.

DEF tic62_a
LIB fbasic.lib

G CBAL word duty ; only the lower 8 bits are used.

FUNC none mai n
BEG N
rs_paramset(debug_pin)
=(duty, 0)
pin_low pin_a2)
tnr2_cont_set(tnr2_con_on)
tnr2_period_set(255b) ; determ nes frequency
ccpl_cont _set(ccp_pwm)
REP
ccpl reg_set(duty)
del ay(10)
++(duty)

ENDFUN

139 Protean Logic

FBASIC TICKit 6 Standard Library

6.17 Constant Symbols Defined in Libraries

DEFI NE buss _8bit 0y10000000b
DEFI NE buss_4two 0y01000000b
DEFI NE buss_4bit 0y00000000b

DEFI NE debug_pi n OxDFb
DEFINE rs_invert 0x80b
DEFI NE rs_19200 0x60b
DEFI NE rs_9600 0x50b
DEFI NE rs_4800 0x40b
DEFI NE rs_2400 0x30b
DEFI NE rs_1200 0x20b
DEFI NE rs_600 0x10b
DEFI NE rs_300 0x00b

DEFINE rs_cont _brk 128b
DEFINE rs_cont _addr 64b
DEFINE rs_cont_wait 32b
DEFINE rs_cont _hand 16b

DEFI NE pi n_A7 Ox0Fb
DEFI NE pi n_A6 Ox0Eb
DEFI NE pi n_A5 Ox0Db
DEFI NE pi n_A4 0x0Ch
DEFI NE pi n_A3 0x0Bb
DEFI NE pi n_A2 0Ox0Ab
DEFI NE pi n_Al 0x09b
DEFI NE pi n_AO 0x08b
DEFI NE pi n_Dr7 0x07b
DEFI NE pi n_D6 0x06b
DEFI NE pi n_Db 0x05b
DEFI NE pin_D4 0x04b
DEFI NE pi n_D3 0x03b
DEFI NE pi n_D2 0x02b
DEFI NE pi n_D1 0x01b
DEFI NE pi n_DO 0x00b
DEFI NE f al se 0x00b
DEFI NE true OxFFb

DEF tnr1_con_on Oy00000001b ; turn on timerl

DEF tnr1_con_ext 0y00000010b external, rising edge source
DEF tnr1_con_sync 0y00000100b synchroni ze to osc clk

DEF tnr1_con_osc 0y00001000b enabl e oscil | ator

(inverter and feedback)
prescal er divide by 1

DEF tnr1_con_prel 0y00000000b

Protean Logic 140

6 Standard Library

FBASIC TICKit

DEF
DEF
DEF

DEF
DEF
DEF
DEF
DEF

tnr1l_con_pre2 Oy00010000b ;

tnr1l_con_pre4 Oy00100000b ;
tnr1l_con_pre8 0y00110000b ;
tnr2_con_on Oy00000100b
tnr2_con_prel Oy00000000b
tnr2_con_pre4 0y00000001b
tnr2_con_prel6é 0y00000010b
t nr 2_con_post Oy01111000b
ssp_node_sl ave7 0y00000110b

ssp_node_sl avel0 0y00000111b
ssp_node_master 0y00001011b
ssp_node_mast7 0y00001110b
ssp_node_mast 10 0y00001111b
ssp_con_cl ken Oy00010000b
ssp_con_enable 0y00100000b

ssp_con_over fl ow 0y01000000b
ssp_con_col I ide 0y10000000b
ssp_stat _full Oy00000001b
ssp_stat _addr10 0Oy00000010b
ssp_stat_read Oy00000100b
ssp_stat_start Oy00001000b
ssp_stat _stop Oy00010000b
ssp_stat _data Oy00100000b
ccp_of f Oy00000000b
ccp_capt _fall Oy00000100b
ccp_capt _rise Oy00000101b
ccp_capt _rise4 0y00000110b
ccp_capt _riselé 0y00000111b
ccp_conp_set Oy00001000b
ccp_conp_cl ear Oy00001001b
ccp_conp_i nt Oy00001010b
ccp_conp_event Oy00001011b ;
ccp_pwm Oy00001100b
ccp_pwmbit0 Oy00010000b
ccp_pwmbitl Oy00100000b

prescal er divide by 2
prescal er divide by 4
prescal er divide by 8

turn on timer2
prescal er divide by 1
prescal er divide by 4
prescal er divide by 16
mask for postscal er

(di vide by val ue)

slave only - 7bit address
slave only - 10bit

nmast er support

- sl ave disabl ed

nmast er support

- slave 7bit address
nmast er support

- slave 10bit address

cl ock enabl e

(not held low)

SSP nodul e enabl ed

i ndi cates receiver overfl ow
col l'ision during

wite to transmt reg

receive buffer is ful

10 bit address to be read
current buss cycle is read
I[IC start bit last received
[IC stop bit last received
data byte in register

(not address)

reset timerl for CCP1
- start A/D for CCP2

141

Protean Logic

FBASIC TICKit 6 Standard Library

DEF i nt_con_peri phe 0y01000000b ; all other peripherals enable
DEF int_con_tnrOe Oy00100000b ; timer O overfl ow enabl e
DEF i nt_con_pi ndOe 0y00010000b ; pin_dO interrupt enable
DEF int_con_portde 0Oy00001000b ; data port change enabl e
DEF i nt_con_t nr Of Oy00000100b ; tinmer O overflow flag
DEF i nt_con_pi ndOf 0y00000010b ; pin_dO interrupt flag
DEF int_con_portdf 0Oy00000001b ; data port change flag
DEF int_flag _ssp Oy00001000b ; mask for SSP (11C) port
DEF int_flag_ccpl 0y00000100b ; mask for CCP1 sources

; (conpare or capture)
DEF int_flag tnr2 Oy00000010b ; mask for timer2 roll-over
DEF int_flag tnr1l Oy00000001b ; mask for timerl roll-over

Protean Logic 142

7 Console Program FBASIC TICKit
7 The Console Program

7.1 Turning your computer into a dumb terminal.

Often, the TICKkit is programmed to run with no need to display or get keyboard information. When
thisis not the case, however, your console computer can act as a display and keyboard for the TICKit.
This convenient little trick is performed by running the "consolexe" program on the console
computer. From your DOS prompt, type:

consol e <serial _port_nunber >
Now any console functions contained in the program in the TICKkit will talk to the Console computer.

When you want your computer back, hold down the Control key and press the letter C (<ctrl-C>).
Occasionally, the Console program will be waiting for some handshaking from the TICKkit. If the
TICkit was physically disconnected or reset at precisely the wrong point, the Console may not
respond to <ctrl-C>. Simply re-boot or reset your console computer if this happens.

7.2 The Console Protocols (home brew TI Ckit 1/0)

Y ou can write your own types of Console programs, also. The handshake protocol for the TICkit is
quite simple. The timing requirements are a bit fast, so make any loops tight to ensure that the
Console commands are all recognized. The protocols for the nine console functions is as follows:

9600 baud - half duplex - 8 bit, 1stop bit, no-parity.

Assumes that the xmit and receive pins are physically connected.
TICKit will wait approx. .5 seconds for response after initial byte.
Most significant bytes are sent first.

test_console: TIC:7F, con:8A.

8bit_char_disp: TIC:59, con:90, TIC:val.

8bit_num_disp: TIC:51, con:90, TIC:val.

16bit_num_disp: TIC:52, con:90, TIC:val, con:90, TIC:val.

32bit_num_disp: TIC:54, con:90, TIC:val, con:90, TIC:val, con:90, TIC:val,
con:90, TIC:val.

8bit_char _in: TIC:69, con:val.

8bit_num_in: TIC:61, con:val.

16bit_ num_in: TIC:62, con:val, TIC:90, con:val.

32bit_num_in: TIC:64, con:val, TIC:90, con:val, TIC:90, con:val, TIC:90,
con:val.

143 Protean Logic

FBASIC TICKit 8 The Debug Program

8 The Debug Program

8.1 What exactly does the debugger do?

The debugger is a program which runs on the Console. It communicates, via the serial port and

cable, with the TICkit. The debugging program can download a program to the TICkit, or verify a
program contained in the TICKkit. The debugger can display information sent by the TICkit as
Console output; or it can get information from the keyboard of the console computer and send it to the
TICkit program as console input, just like the Console program in the last chapter. The main purpose
for the debugger, however, isto aid in the debugging of a program. When debugging, a line-by-line
display of what is happening as the program executes appears on the Console screen. Before each line
is executed, the source text for that line is displayed followed by arequest for a debug command. The
user can execute that line, part of that line, or step into a sub-function of the line. The user can also
examine the contents of a memory variable or change the value of a memory variable. Thiscycleis
repeated for each line asit is encountered during the execution of a program. By carefully watching
what happens as the program executes, sources of error show themselves quite readily.

8.2 The Debugger's Screen Format

C:\ Tl CKI T>debug62 2 first
TI Ckit DEBUG62 program - Protean Logic- (c) 1995
Consol e Active, attachedvia COM to TICkit...

:::::::::::::::::::::l Debug Di al ogl —=—=—=—======= ::l Wat ch Poi nt sl ===

| *** Reset TICkit for debuggi ng now.. .
| ¥#**%xxkxxxxxxxxx Conmand:

| Connected to TICKkit...

| TOKEN: EO PC: 002E Comand:
:::::::::::::::::l TKN: first | :| SY'\/BL' —====== ::l MP: | :l SP: ==

When the debugger starts, the screen is split into two parts. The top part is the Console display area.
This area, although smaller, acts just as the screen of the Console program in the last chapter. The
bottom half of the screen is a split box. The left side of this box is called the "Debug Dialog" area.
The right side of the box is called the "Watch Pointsarea.

The bottom of the dialog area displays the name of the file which is being debugged, if given, as well
as the words TOKEN or SYMBL depending on whether or not a symbol file could be located with the
same root name as the token file. Symbolic program line information and variable names are only
available when the word SY MBL appears at the bottom of the dialog area. The bottom of the watch
points area displays the current value of the "memory pointer (MP)" and the value of the "stack
pointer (SP)". These values indicate how much RAM is available for use in the TICKkit at each point

Protean Logic 144

8 The Debug Program FBASIC TICKit

of program execution. If ever the MP is greater than or equal to the SP, a STACK OVERFLOW error
message is reported in the dialog area.

8.3 Debug Commands (doing what you want to do)
:::::::::::::::::::::l Debug Di al ogl —========== ::l Wat ch Poi nt sl ===
F=speci fy synbol and token Files
D=Downl oad to TICkit C=Conpare file with TICkit

I I I
I I I
I I I
V=renory Val ue access WeWAt ch val ue mani pul ati on	
E=Execut e and di sconnect M=execut e and Monitor program	
B=Br eakpoi nt nani pul ati on for program nmonitoring	
I I I	
S=Step into function P=Pass over function	
T=Trace through the program and di spl ay tokens	
R=Reset the TICkit, restart the programat its beginning	
@Quit debug, return to DOS (TICkit will run program	
:::::::::::::::::l TKN: first | :| SY'\/BL' —====== ::l MP: | :l SP: ==

The first command to become familiar with is the "? command. Thiswill display a brief key to the
debug commands in the debug dialog box as shown above.

The fourteen, one letter commands are all that are required to debug a TICkit program. The summary
of these function follows:

?: Display a summary of commands. This command is useful while becoming
familiar with the debug program. This command has no effect on the status of
the program being debugged, but simply provides a simple on-line
reference for the user and suggests which command might be useful at a
given point in debugging a program.

F: Specify a file name to associate with the program in the TICKkit. Only a root
name is required. When the file name is entered, the debugger will attempt
to locate both a token file and a symbol file of the name given. The token file
will be used by the Download (D) and compare (C) commands. The symbol
file contains all symbolic information like source line information and global
variable name and size.

D: Download the token file to the TICKit. This command will ask the user for a Yes
(Y) before continuing to prevent an accidental download. After the file
downloads, the debugger will automatically do a comparison of the TICkit
EEprom with the token file to verify the file was downloaded correctly.

145 Protean Logic

FBASIC TICKit 8 The Debug Program

C: Compare the token file against the contents of the TICKit. Only success or
failure is reported. To prevent commercial programs from being pirated
from a programmed TICKkit, the download and compare debug commands
only send information to the TICKit. In other words, there is no way to read
the contents back from the TICKkit.

V: Allow the user to look at and optionally change a value in the TICkit memory.
When the command is entered, a line is displayed in the dialog area which
asks for the value's address or name. At this point a TICkit RAM address or a
symbolic name for a global variable from the source file may be entered. If
an address is entered, the user will also be asked for a size of the memory
value. Enter 'B' for a byte, "W’ for a word, or 'L' for a long. If a symbol name is
entered, the size of the variable will be known automatically. The user may
also simply press return when asked for an address or symbol name. This will
cause a list of global symbols to be displayed in the dialog area. A variable
can be chosen from this list by using the arrow keys and the <return> key.
However the variable or address is entered, the debug program will display
the current contents of the address followed by a colon. The user may enter a
new value or press return to leave the value unchanged.

W: Manipulate Watch points. This function is used to maintain a table of up to five
variables that the debugger should watch. Each value that is watched will
display automatically in the watch point area of the debug screen. When the
user asks to manipulate watch points, the debugger will display a line in the
dialog area asking for the watch point number. This is a value, one through
five, that specifies a watch point. After this number is entered, A list of
variables will display in the dialog area. Use the arrow keys and the <return>
key to select which variable to watch. At this point the debugger will
automatically display the value for the memory location. A watch point can be
removed by entering the watch point number preceded with a minus sign.

E: Executes the program contained in the TICkit EEprom from the current
program counter (PC) location. The TICkit will stop asking for debug
commands, effectively disconnecting from debug, at this point. Console
information will continue to be communicated to/from the TICKit. The
program within the TICkit may restore connection with the debugger by
executing the "debug_on" function. Any breakpoints will be ignored while
there is no debug connection to the TICKkit. To execute a program but retain
the debug connection, use the monitor (M) debug command instead of the
execute (E) command.

Protean Logic 146

8 The Debug Program FBASIC TICKit

M: Monitors the TICKit program while it executes. This method of program
execution is much slower than normal TICKit execution, but maintains the
debug connection between the debugger and the TICKkit. This allows the
debugger to update memory value watch points (when implemented), and to
stop program execution when a break point is detected. An alternative to
using the Monitor mode, is to modify the program and place debug_on() and
debug_off() function calls in key areas of the program. The debug_on
function has the same effect as a breakpoint. By using the monitor function in
conjunction with the debug_on method, a program can be debugged much
faster and easier.

B: Manipulate Break points. Break points provide a means of interrupting
program execution at predefined points in a program. This is often useful in
larger programs where only a certain part of a program needs to be
debugged. When a program is executing in monitor mode, execution will
halt as a source line marked as a break point is about to be executed and the
user will be asked for a debug command. Up to 10 break points can be active
at one time. Setting breakpoints is very easy. After the user requests to
manipulate break points, a list of current breakpoints is displayed in the
debug dialog area. The debugger will then ask for the break point command.
Enter the number of the break point to modify. At this point a list of source
lines will display in the dialog area. Scroll through this list to select the
desired line as a break point using the vertical arrow keys and the page
up/down keys. Press <enter> to select the desired line or <esc> to cancel
the break point selection. Break points can be removed by entering the
number of the break point preceded by a minus sign at the break point
command. Breakpoints can also be specified using the "default breakpoints
within symbol file" method. In this method, the user edits the .SYM file for the
program to be debugged. Any line which is to have a break point should
have a '+' placed as the first character of the desired source line. Using this
method will cause the debugger to automatically load the break points for
these lines when the file is selected.

S: Step into subroutine. This command will execute the current line and display
the next source line either in a subroutine or the next consecutive line of the
program. This command is used to test all levels of the source code.

147 Protean Logic

FBASIC TICKit 8 The Debug Program

P: Pass over subroutine. The pass (P) and the step (S) debug commands are
almost identical, but differ in the way they handle calls to subroutines. The
Pass command will execute the subroutine, but will not display any source of
the subroutine. The next source line displayed, and the next opportunity to
enter a debug command, will not occur until the source line immediately
following the subroutine call is about to be executed.

T: Trace tokens. This command will execute the next token and ask for another
debug command. Use this command for debugging programs that do not
have an accompanying symbol file, or to see exactly what is happening at
each token of a program.

R: Reset the TICKit. Restores all 1/0 pins of the TICKit to power-on status and
starts the program from the initial point.

Q: Quits the debug program. The user will return to the DOS prompt, or other
calling program if the debugger was started from a launcher. This will
implicitly cause the TICKkit to execute when the debug connection times out in
the TICKit.

These commands are simple but effective for tracking down run-time bugs. Users will use the Pass (P)
and Step (S) commands most frequently. Try out the debugger on the sample program "first" to get a
feel for how to tracethrough a program.

A program can also be modified to include "debug_dnand "debug_off" function calls. This can be
useful for speeding up the debugging process. Using these functions in areas of the program that need
debugging can be great for skipping larger sections of a program that either do not need debugging,
or which must run at full speed for some reason.

The <esc> key or the <ctrl-C> key can also be useful at various points in debugging. They can be
used to cancel a command. This might be particularly useful when arequest for a debug command is
not displayed. For example, the <ctrl-C> key can be used to exit the debug program while the
"Execute" command is active and the target processor is running.

Protean Logic 148

9 The Compiler Program FBASIC TICKit
9 The Compiler Program

9.1 How to invoke the compiler...

The Compiler is definitely the most complex of all the programs in the FBASIC TICkit package, and
yet it is probably the easiest to use. Simply enter the word FBASIC at the command prompt followed
by the name of the primary source file to compile.

The sourcefileis called "primary” because there may be multiple source files for a program through
the use of the LIBRARY and INCLUDE statements in the primary source file. The primary source
fileisthe only source file in the program not referenced by any other source file. The primary source
file references all the other files.

9.2 The FBASIC command line
FBASI C <source_fil e_name> [<synbol name> <synbol _contents>]

In our "first.bas" example, the user would type:

fbasic first

The compiler will start and report the progress of the compile. If the compiler finds any problems,
error or warning messages are displayed. In the case of error messages, no final token file or symbolic
file will be created. Warnings allow the compile to continue, but put the programmer on notice that a
possibility of error in the source file(s) exist. The best programming practice is to write programs that
do not generate warnings or errors.

9.3 What do the error messages really mean?

Error messages can be a bit cryptic sometimes. Often this is because the compiler is not able to
determine the desired meaning of aline so the report of the error makes little sense to the
programmer. However, examination of error message reveals that there are four distinct pieces of
information in every error or warning report.

ERRCR: LCD FM. LI B(37) Unknown expressi on.

The above error message is typical of the error reports from the compiler. The first word indicates is
the error report isatrue ERROR or if it isjust aWARNING. The second word is the name of the
source file where that the error was discovered. Next is a number enclosed in parenthesis. This
number is the number of the errant line in the file named. The line number may be the most useful
information in an error report because it allows the programmer to find and examine the line directly
with atext editor. The remaining part of an error report gives the programmer some hint of what is
wrong with the line. Often, a single error will produce several error reports since the compiler is not
really sure what is wrong with the line. After all the source files have been scanned for errors, afinal
count of error and warning producing lines is displayed. Only the number of lines with errors and
warnings are reported, not the number of error reports. Thisis usually a more accurate indication of
the number of actual errorsin a program.

149 Protean Logic

FBASIC TICKit 9 The Compiler Program

9.4 Command line Symbol Definition

The FBASIC command line can also be used to define one symbol within the compile. Defining a
symbol from the command line is useful for creating multiple programs from a single source file. For
example, amotor control program may be identical for two motors except for the RPM sampling
delay of the more powerful motor. A single source file for the two versions of the control program can
be used in which the delay is dependent on a symbol's definition. Simply compile each version with a
different symbol value. This technique is especially valuable as programs are modified throughout
their life. A single source file ensures that all versions of the program get updated with exactly the
same modifications. The program fragment and command line below illustrate this technique.

del ay(rpmsanpl e_interval)

fbasi ¢ rpm sanpl e_i nt er val =3000

9.5 The Symbol file: A neat debugging trick

The compiler will produce two files as output. One file is the token file. It will share the same root
name as the primary source file but with the extension ".tkn". Thisis the file which is downloaded to
the TICkit. The second file is the symbol file. It also shares the root name of the primary source file
but has an extension of ".sym\. Thisfile contains alist of all the source lines in the compile that
actually produce tokens and the address of the first token of the line where it will reside in the TICKkit
EEprom. Also, alist of Global data symbolsis contained in the symbol file which matches TICkit
RAM offsets with symbolic names and types.

All of thisinformation is used by the debugger during tracing. The user may wish to edit thisfile to
place default break pointsin a complicated debug session. Thisis accomplished by placing an '+' at
the beginning of aline that isto have a break point where it appears in the symbol file. Special care
must be exercised when editing a symbol file. If any offsets are changed, or the order of linesis
altered, the debugger will become confused.

Default watch points can also be specified in asimilar way. Simply place a'+' at the beginning of the
line which references the symbol to be watched in the symbol file. Only the first 10 break points will
be loaded, and only the first 5 watch points will be loaded using the symbol file method.

9.6 Compiler Method of Setting Break and Watch Points

The compiler can also set default Breakand Watch pointsin the symbol file. Use the keyword,
"BREAK", at the beginning of any procedural line to associate a break point with that line. This
keyword has absolutely no effect on the token file, but places a'+" in the symbol file at that line. The
line that the BREAK keyword is used on must be code producing. For that reason, a REP statement or
similar statements are not able to trap the BREAK.

Protean Logic 150

9 The Compiler Program FBASIC TICKit

Watch points can also be set in the source file. Use the keyword, "WATCH" at the beginning of any
GLOBAL or ALIAS statements. At thistime, none of the debuggers are capable of watching local
values or parameters. Future debuggers may have this capability.

151 Protean Logic

FBASIC TICKit Appendix A: Circuits
Appendix A: Circuits

A.1 Download Cable(s)

Uld Bi—-Direction Serial Cable
9 (Download Cable)
-pin Female Jumpers RD
Subi D -
o"'"" ' «’ optional 330 ‘Ir'.’c pr?ea.:la::
(Rx) pin2 O °_|° ? YWV O DL
(T pin3 O~ VWV O gnd
o5 — Rl 4.7K
(gndd pinS O
New Bi—Direction Serial Cable
9 (Download Cable)
-pin Female D1
Submini D 2- Mal
o5— 2.4v 1¢ header
(Rx) pin2 O-5— +—7 O DL
(Tx> pin3 O~ VWV O gnd
o5 — Rl 22K
(gndd pinS O

Pin 3 of the Consolecomputer's 9 pin serial port is atransmit pin. When the Console is not
transmitting data, this pin will be low (-9 to -12 volts). Thisis an RS232 idle or stop bit state. The
4.7K ohm resistor acts as a pull down resistor to cause Pin 2 of the Consol€'s port to see an idle state,
also. Pin 2 isthe receive line for the console. The + pin of the DL port on the TICKkit will also see the
-9 volt signal, but will shunt it to ground via the 330 ohm current limiting resistor. Either the TICkit
or the Console can raise the voltage on the data line by simply transmitting data. When the TICkit
transmits data, a voltage divider is formed between the PIC's output and the output of the Console's
RS232 output. Because the leg of the divider to the Console's output has a much greater resistance,
the PIC's output has priority over the Consol€e's output.

When using this type of bi-directional data cable, The TICkit must be programmed to invert the
RS232signal. The TICKit will use an open source output causing low outputs to be "high impedance”,
while high outputs will be approximately 5 volts.

Protean Logic 152

Appendix A: Circuits FBASIC TICKit

A.2 Multi-drop connection of multiple T1Ckits.

+ + +

TICkit #1 TICkit #2 TICkit #3

Isolate power supplies to eliminate ground loop difficulties.
Each resistor = 1/2 line impedance. Try 50 ohms.

Multiple TICKkits can be connected together using a shared wire configuration. By matching the pull
down resistance to the characteristic impedance of the transmission line, long lengths can separate
TI1Ckits while maintaining good data connection. An example of this type of connection is shown
above. At 9600 baud, reliable communication can be expected up to 1000 feet. Longer lengths can be
acheived using lower baud rates and/or better terminations.

Thistype of connection also requires that the RS232 configuration use the inverted option. The user
can adopt a protocol that uses framing errors to identify message addresses. By enabling stop bit
interrogation, the TICkit RS232 serial library can be made to generate, as well as detect, framing
errors. Using this sort of "9 bit" technique allows message headers to contain a special byte with a
framing error to distinguish the header from the data stream.

The TICkit 62 has a special function just for doing this type of hetwork communication called
rs_recblock. The example below illustrates the program lines necessary for this type of
communication.

153 Protean Logic

FBASIC TICKit Appendix A: Circuits

Sending programfor a TICkit 62

=(index, 0b)

rs_break () ; send a break |eve

rs_send(3b) ; send the node address. In this case,

; send to node 3 (note node O shoul d not

be used as this may be inplenented as
a broadcast to all nodes address in
the future

REP

rs_send(buffer[index])
data to be sent is containded in the
array buffer with 10 bytes
++(i ndex)
UNTI L >=(index, 10b)

; receiving program fragnent

VWH LE rs_recblock (Ob, rs_cont_brk, 3b, buffer, 10b)
the above will continue to loop until a 10 byte
bl ock is received without errors addressed to
node 3. The resulting data will reside in buffer
for use by the rest of the program

LOCP

Protean Logic 154

Appendix A: Circuits FBASIC TICKit

A.3 The RC measurement Circuit

TICKit

QAN

Rinternal

This circuit, coupled with the rc_measure function in the TICkit standard library, will measure either
a capacitor, aresistor, or both using a timing method. Rcharge and Rlimit resistors may be omitted,
but are useful for discussion purposes to preventing boundary problems. As arule of thumb, the
product of Ctest multiplied by the sum of Rtest and Rlimit should equal one where the value of Ctest
isin farads, and the values of Rtest and Rlimit are in ohms. Therefore, a value for Ctest of 10uf, a
100k ohm value for Rtest and a value of 0 for Rlimit will produce approximately a 16 bit count range.
Accuracy with this measurement method can vary from tenths of percents at high R and C valuesto 5
percent for low R and C values. For this reason, using an Rlimit resistor of 1k ohms can generate
higher accuracy. Any count offset introduced as a result of Rlimit can be compensated for by
subtracting a constant from the resulting counts.

The RC measurefunction works by assuming that the capacitor is mostly discharged. This
assumption will be true provided that the pin was either held low for a short period, or if an RC
measurement was the last 1/0 function on this. The routine then charges the capacitor by internally
connecting the pin to a high logic level. The capacitor will charge rapidly with only the internal
resistance and any Rcharge resistance to slow its rate of charge. The routine monitors the voltage on
the output pin approximately every 10us. When the routine sees a high level voltage, the pinis held
high for an additional 768us. The pin is switched to an input and the time until the voltage on the
capacitor fallsto alow level isthe value returned as the RC measurement. The count isfairly linear
with respect to the Rtest and Ctest values, however, there are sources of error.

First, the initial threshold is only accurate to the RC measure routines ability to see the instant the
capacitor is charged to a high level. Because the pin is only sampled every 10us, there is a window of
error. By increasing the Rcharge resistance or by using alarger capacitor, the effect of this inaccuracy
can be minimized. The side effect of increasing these valuesis that it takes longer for the entire
measurement to be performed. Also, if the charging timeislonger than .65535 seconds, a0 will be
returned from the function.

Another source of error is caused by the divider formed between the Rtest and the Rinternal. If Rtest
isvery low, the charging voltage may actually be less than the high threshold voltage. This will

155 Protean Logic

FBASIC TICKit Appendix A: Circuits

prevent the Capacitor from charging to the high threshold. When this happens, the entire
measurement takes too long, and 0 is returned. By using an Rlimit of approx. 1K ohms, this
possibility is minimized.

Finaly, the Rinternal value and the threshold for a high or low level on the pin is not precise. The
PIC was not designed to be a comparitor, so there will be shifts due to environmental conditions. The
RC measurement routine is useful for qualitative results, but the user must exercise caution to ensure
the required accuracy of data when using this routine.

Examples:

Thi s programrepeatedl y neasures the RC network and di spl ays
the result on the console. In this exanple a 10K pot was
used with a 10uf capacitor.

DEF tic62_a
LIB fbasic.lib

FUNC none mai n
BEG N
rs_paramset(debug_pin)
REP
con_out(rc_measure(pin_a0))
con_out _char("\r')
con_out _char("\I")
del ay(100)

ENDFUN

Protean Logic 156

Appendix B: TICKit 57 FBASIC TICKit

Appendix B: TICkit57 Hardware
B.1 FBASIC TICkit57 schematic diagram

ul
LM2940CT-S

0-0-0-0-0-0
ovr] e o
[s] +
for C3;_ R ébnhz

L
gi)vl?eic% 22uf 10vdc 247K o =
1S5pf T T 15pf
St R3 22K
Reset oy R4 a1 p22K
}——O0 RS 22K
LR AM\EEK Yone4e erecsn O AReset
u4 L 1 28 5 Cout
F unt Input
2{‘065 e £_1\ Interupt Ack
2 AD Vee > e /Interupt Req
SIAL WP = =\ 1910 Downlood (A?-GP1S>
i Scikle P O Read/Write (A6-GP14)
Vss Sdata 2 O AS (Gen purpose 13
5 2 gM (Gen purpose 12)
o A3 (Gen purpose 11>
US__ Write Protect 1 :o RA3 RC2 fG O A2 (Gen purpose 10>
3{‘065 e 11 REO RC1 [O Al (Gen purpose 9
[eAO Vee > 2 RB1 BCO 2 O A0 (Gen Purpose 8)
! SlAL WP = 5RE2 RB? 15 O D7 (Gen purpose 7>
! riled Selk[S Oclk 14 RE3 RBG |1 O D6 (Gen purpose 6>
[Vss Sdata Odata O DS (Gen purpose 5
12C Buss O D4 (Gen purpose 4>
0 0 O— O D3 (Gen purpose 3>
Write Protect 0 O D2 (Gen purpose 2>

O D1 (Gen purpose 1>
O D0 (Gen purpose 0>

:}oglléooooo$6o §00-000

GND LCD Display Buss

This diagram is the schematic for a 20MHz, 64kbit EEprom TICkit 57. The crystal can be either a
4MHz or a 20MHz, depending on which interpreter program is contained in the preprogrammed PIC.
The EEproms may be either 2Kbyte (24L C16) or 8K byte (24C65) versions, also depending on the
program in the PIC. For the 8Kbyte versions, up to 8 EEprom devices can share the same two lines
(SCL and SDA) from the PIC. The combination of the A0, A1, and A2 EEprom select lines
determine the addressing of the EEproms. For a single EEpromanfiguration, all lines A0, A1, and
A2 should be grounded, as shown.

Support for two EEproms addressed in blocks 0 and 1 is provided and each EEprom may be
individually write protected.

157 Protean Logic

Fbasic TICkit Appendix B: TICkit 57

B.2 TICkit57 Specifications

Physical Dimensions: Overall; 2.5 x 2.5 inches,

Prototype area; 1.0 x 2.5 inches

Power Supply: Input; at least 5.7 volts @ 50ma Output 5.0 volts @ 900ma
Input/output: 1/O pins can sink up to 40ma each or 150matotal. 1/O pins can source 50ma
total.

See the Microchip™ PIC databook for 1/0 specifications. All PIC16C57 1/O parameters
apply to TICKkit I/O lines. 4AMHz versions use less power and can operate on alower voltage.

B.3 Component Placement Diagram

Ot &+ _ S vde
ug__ YRES -

Power Connection e [1] 8- \
(Gnd to left) B || 1R° T Console/Downloader
- Connection
€22 - (Gnd to left)

The above diagram shows the locations of components and pins for the TICkit. One important point
to notice, is that the data group of outputs is numbered in the opposite order from the address group
pins. Thisis simply a placement issue, but there is a possibility of confusion when wiring components
to the TICKkit.

Another point to notice is that the power and download connections are hon-polarized two pin
connectors. The ground pin is always to the left, but the user must exercise caution when applying
power or when connecting the Download cable to ensure proper connection polarity. Reverse polarity
will not damage the TICkit however - DO NOT PLUG THE POWER INTO THE DOWNLOAD
PORT - thiswill destroy the TICkit interpreter IC.

Protean Logic 158

Table of Contents FBASIC Compiler

Appendix C: TICkit 62 Hardware
C.1 TICkit 62 Schematic (40 pin module)

uz2
24C65
12.‘-‘.0 ~ Vee g
R1 R2 3 Al wpP 3
22K 22K A2 Sclk
4 Vss Sdata il
1N4148
R3<D1 R4

22K 22K \/\N\,
RS 40
o1 ul o
fo) T168H64A lo)
O 7Res D7loS O

o 2 27

O 3 /Irq D6 56 O
037; (o, 3 Spec IS 25 O
10uf O 5 [EEPWr Darse O
O 3 EEclk I3 23 O
(e, > Tmr0 D2 5 O
—0 8 EEdat D1 21 O
|I:|| O 9 Gnd D0'Int| 20 O
1Lt O ‘Tﬂscl Vdd o ‘o]
X1 20MHz o—n I_n Dsc2 GndfZ—O——+0
O—I 12 A0'tmri AZ7'DL FC O
O—I 13 Al A6'RW 6 O
ci1L ceL O-I 14 A2'ccp AS 5 O
lapf"‘ B lap‘f'h B (o] A3'Ick A4'Idt O
o] WwrPl1o
o o
o (o}
o 20 21| o

The TICkit 62 is available asasingle IC or as a40 pin module. The 40 pin module is a small printed
circuit board with a pin pattern and overall size that matches the standard size of a 40 pin DIP. The
schematic shown above is the circuit for the module. Notice that some of the top and some of the
bottom pins have no connections. Components D1, R4, and C3 form a basic reset circuit which
ensures that power is stable before the T62 processor IC beginsto run. R3 pullsthe /IRQ input high
to eliminate any false Interrupts. Interrupting devices connected to this pin should all be open
collector (open Drain) to allow wire or-ing of the inputs. R1 and R2 pull the I12C lines high. If you
will be using these lines to connect to other 12C devices which are 24 inches or more away from the
TICKkit, pull the lines stronger with resistors as small as 1.2K ohms.

159 Protean Logic

FBASIC TICKit Appendix C: TICKit 62

C.2 TICkit 62 Project Board Schematic

+Svdc U3
2940CT-5
I\/ln I
Cc3 [C%;\
250 hole prototype area) 'lulf 2au
S.6vdc
o
h;_l o)
U1
XTN73
1 28
2 27
3] 26
4 | 25
2—AN3/vroPGP3 23
7—/IRQ GP2 2
=1AN4 GP1
— e — i<91.66 —e\/ss GPO &l
—| Spare 8pin | ' 2 lnsct vdd[2
— Socket - ! 10 osc2 Vss 19
24c65 —| pattern [J_ JTH oty Rxp 18
a0 Vel ci—ce—| Zme T2
Sl WP 12pf| 12pf| | HPwM X0 =
7 ca sﬁﬁ Ground Ziaceik 12cpat
. ARRRNNNNN

The T62-PROJ project board provides a means for wiring up simple TICkit 62 based projects. A 40
pin 1C socket accepts the TICkit 62 module. Additionally, a +5 vdc regulated power supply is
implemented on the board. Simply connect any DC source between 5.6 and 18 vdc into the coaxial
power connector (center -). Notice that input voltages greater than 6 volts will limit the power output
of the supply because of al the excess voltage the regulator needs to drop. This will overheat the
regulator if alarger current is being drawn and cause the regulator to automatically shut itself off.

A socket for an additional EEprom is supplied which has already been strapped for block 001 (the
second 8k block in the TICKit 62's address space). There is also afoil pattern for an Xtender or a
second TICkit 62 on the board. Simply solder in the Crystal, IC socket, and capacitors. 12C and other
connections will have to be hand wired to complete an Xtender installation.

Protean Logic 160

Appendix C: TICKit 62 FBASIC TICKit

C.3 The TICkit 62 Module and I C pin diagrams

lne VY LRes VT D7ES

2 39 2 27

S[ne nciag 3 /Irq Dée 3

2| Reset s +Spec D55 General

S|/Ira D66 SEEPur Dar=2 Purpose

=Hspecat 5|2 | Genera —{EEclk D35 [orData

£ EEpwr D4 33 Purpose £ Tmr0 D2 23

>)
% EEclk 322 [or Data C{EEdat Dt g—f Buspins
—=—{Tmr0 D2 . —1Gnd DO'Inti =
9 20

% EEdata D1 Buspins oosct vadi2

i Gnd DO'Int TN Osc2 Gnd 16

Ulnece vod General (T-a0tmr1 AZ'DL 5 General
General ¢ BlaoTmrl Gnd Purpose | 1At AsRWEZ | Purpose
Purpose Hat AZDL General or Addr | foezccp asfe (or Address
or Addr 51 A2'ccp A6'RW purpose Bus pi ns\ —1ASIck A4'Tdt[— / Buspins

Buspins * i6] A3Tckk AS or Address

7|ne Ad4'Idat Buspins

a|nc

18]

19]

2o[™

The schematic diagrams above show the internal connections are for both the 40 pin TICkit 62

module (on the left) and the TICKit 62 interpreter IC (on the right). The interpreter IC isavailablein
both a 28 pin PDIP and 28 pin SOIC package.

C.4 Making your own layout using the 28 pin IC

Using the IC alone is not recommended for your first experience the TICkit. However, for production
runs, or for smaller and lighter circuits, you will probably want to use the TICkit interpreter IC
instead of the module. There are few special considerations when using the IC alone but the following
list will make sure your project goes off without difficulty.

1. Connect both of the IC's ground pins to ground. On the module, only on pin needed to be

grounded, but the 1C needs both pins to be grounded.

2. Keep the Oscillator wire runs as short as possible. Using a crystal time base is suggested over

aresonator to ensure that communication baud rates are as close as possible to the official
value. Variations between the sending and receiving communication time bases are
sometimes large enough to cause communications errors due to the way in which the async
start bit is detected. Even aresonator with an error as small as 1% may result in
communication if the sending device has a 1% time base error, and the baud rates are high
(9600 and above).

. The reset circuit used in the module is probably more elaborate than required by most

applications. However, the reset pin should never be connected directly to Vdd. A resistor of
at least 10K should be used to prevent the IC from sensing a reset voltage greater than Vdd
which isthe ICsinternal programming condition.

. The pull-up resistor for the EEprom bus (an 12C buss) need to be matched to the overall

length of the buss. If the bus length is quite long, pull up resistors should be used at both

161

Protean Logic

FBASIC TICKit Appendix C: TICKit 62

physical ends of the bus. The 22K ohm resistors used by the module are sufficiently low for
lengths up to approximately 24 inches. The pull-up resistance should not be less than 2K.
For long EEprom bus lengths some experimentation should be done before a PCB is layed
out to ensure that the communications are reliable.

5. The Microchip PIC16Cxx ICs are very resistant to static discharge, but the clampling diodes
used for this protection can create problemsif your circuit will ever be partially powered
down. Because all 1/0 lines are diode clamped to both Vss and Vdd, any voltage which
remains on an 1/O line may inadvertantly power the IC. Series resistors or other similar
measures may be used to prevent the Interpreter 1C from running or drawing power in a
power off situation.

6. The 24C65 EEproms used by the TICKit to store the user's program and data generates its
own programming voltages and timing. This is convenient from a development point of
view, but can be a source of problem when you do not want your program to accidentally be
written over. The TICkit has solved this problem by supplying power to the 24C65 from one
of its I/O pins. The forces the EEprom into reset during power up and down. Therefore, the
EEpower pin can and should be used as the system reset to keep all devices reset until the
controller is stable. Y ou may also wish to use 24L C64 EEproms which have a hardware
write protect pin on them.

Using the IC instead of the module creates a more compact and less expensive design, so do not be
intimidates to venture into this type of project.

Protean Logic 162

Index FBASIC TICKkit
B Cycle, 7
Buss connection, 113, 136 Editing a program, 8, 10
tools, 10

Wiring Diagram, 63

Downloading, 3, 6, 141, 148

C
CMOS";%"S'C%O - EEprom, 19, 109, 126, 153
74HC1323 48 Allocation, 19, 85
7AHCLSL, 48 It Values 89
_ 74HC74, 72 Strings, 19
Compiler, 145 Structures, 19, 87
FBASIC.EXE, 5, 10 T
symbol file, 146 Errors, 145
’ Compiler, 8
Connecting, 7
D Hidden Sources, 22
Debug, 140
Break Points, 85
Breakpiont manipulation, 143 .
FBasic
Compare Command, 142 .
Download Command, 141 @ (f.' eld conne_:cter), 20
Execute Program, 142 ~ (Line extension), 17, 21
X ’ I (partial field), 20
File command, 141
help, 141 Constants, 17, 18, 123
Monitor Execution, 143 esc_::ape a]sequgnlcezzs;: 1266 87 o1
Pass over function, 144 ext _\103ue, ren e
Reset, 144 E) 13
Serial Port, 5, 139 fxnﬂﬁ%nsérload'n 28
Step into function, 143 LL! Il_ab IV 16 Ing.
Token Execute, 144 Irrlﬁax 123'
Value modify, 142 %’} AT
Watchpoint Manipulation, 142 XL SITINGS,
. Variable Scope, 21
Debugging, 126, 146 :
: Variables, 21
Breakpoints, 85, 143
DEBUG.EXE, 5 leed_P0| nt Arithmetic, 68
Tracing a program, 144 Functions decrement). 28. 99
Watchpoints, 94, 140, 142 __((equal to))’23 6. 27. 104
Development o P e S
123
ACQUIRE.EXE, 26
Compiling, 10 >= (greater or equal to), 104
Console, 14, 123, 139, 148
163 Protean Logic

FBASIC TICKit Index
++ (increment], 12, 26, 27, 99, con_out, 125
111 con_out_char, 12, 98, 101,
<= (less or equal to), 104 111, 125
<> (not equal to], 12, 105 con_string, 125
<< (shift left), 26, 102 con_test, 123

>> (shift right), 102

+ (addition], 21, 99, 101
= (assignment], 12, 26, 97
- (change sign), 99

/ (division), 98, 100

> (greater than), 101, 105, 106
< (less than), 105, 106

* (multiplication), 100
% (remainder), 100

- (subtraction), 98, 99, 109
and, 25, 102, 103
aport_get, 107
aport_set, 107
array_byte, 100
array_long, 101
array_size, 101
array_word, 101
atris_get, 107

atris_set, 107

b_and, 102

b clear, 103

b _not, 102

b _or, 102

b_set, 102

b_test, 103

b _xor, 102

buss read, 114
buss_setup, 62, 114
buss write, 114
ccpl_cont_get, 131
ccpl_cont_set, 131
ccpl_reg_get, 131
ccpl_reg_set, 131
con_fmt, 69, 125
con_in_byte, 124
con_in_char, 124
con_in_long, 124, 125
con_in_word, 124

cycles, 34, 108, 109
debug_off, 127
debug_on, 127, 144
delay, 27, 32, 116
dport_get, 107
dport_set, 107
dtris_get, 107

dtris_set, 108

ee read, 12, 110

ee read_long, 110

ee read word, 110

ee write, 110

i2c_read, 112
i2c_write, 112
int_cont_get, 128
int_cont_set, 127, 134
int_flag_get, 128
int_flag_set, 128
int_mask_get, 128
int_mask_set, 128
Irg_off, 127

Irq_on, 127
lcd_cont_wr, 115
Icd_data wr, 115
lcd_fmt, 115

lcd_init4, 114
lcd_init8, 114

lcd_out, 115

lcd_string, 115

not, 102

or, 28, 102, 106
pin_high, 25, 28, 39, 106
Pin_in, 25, 33, 103, 107
pin_low, 25, 28, 103, 107
pulse_in_high, 108
pulse_in_low, 108
pulse_out_high, 25, 103, 108
pulse_out_low, 108

Protean Logic

164

Index FBASIC TICKit
rc_measure, 109, 151, 152 trunc_byte, 97, 98
reset, 127, 128, 130, 131, 132 trunc_word, 98
rs_break, 120, 150 xor, 102
rs_delay, 122
rs fmt, 122
rs_param_get, 120
rs_param_set, 12, 28, 101, 119, 1/O

120, 123 analog, 34
rs recblock, 121, 150 CCP, 34, 71
rs receive, 27, 120, 121 Current Gain, 38
rs send, 27, 120 Feedback, 42
rs_stop_chek, 28, 122 general purpose, 30
rs_stop_ignore, 122 H-bridge, 42
rs_string, 121 motor control, 44
rtcc_count, 118 relay control, 38
rtcc_ext fall, 118 Input Sensing
rtcc_ext rise, 117 Key Matrix, 46
rtcc_get, 117 optical, 43
ricc_int, 116 Pulse M easurement, 71
rtcc_int_16, 117 quadrature encoding, 42
rtcc_int_256, 28, 117 RPM, 73
rtcc_set, 28, 117 Switches, 44
rtcc_wait, 28, 118 Timerl, 71, 73
sleep, 117 Interrupts, 126, 129
ssp_addr_get, 132
ssp_addr_set, 132
ssp_buffer_get, 132
:g—*c’;‘;ftergf'l :5’2 Key Words, 29, 83
ssp_cont_set, 132 ALIAS, 83, 84, 91
sop__status get, 132 ALL(l)fC,)ATE, 19, 83, 85, 109,
tmrl_cont_get, 130
tmrl_cont_set, 130 ggglLE’lszalis
tmrl_count_get, 130 BREAK 83. 85
tmrl_count_set, 130 CALL. 84 86
tmr2_cont_get, 130 DEFINE, 12, 27, 83, 86
tmr2_cont_set, 130 ELSE. 27 84
tmr2_count_get, 131 ELSEiF 8 1
tmr2_count_set, 131 ENDFUNCTION, 12, 84
tmr2_period_get, 131 ENDIFE. 26. 84
tmrlz—perg%d—set' 131 ENDOPERATION, 84
to_long, ’
to_ word, 98 ENDRECORD, 83

165 Protean Logic

FBASIC TICKit

Index

EQUIVALENT, 84
EXIT, 84, 86
FIELD, 19, 83, 87

FUNCTION, 12, 27, 84, 87, 91

GLOBAL, 12, 21, 83, 87
GOSUB, 84, 88

GOTO, 16, 84, 88

IF, 26, 84, 88
IFDEFINED, 83, 89
IFNOTDEFINED, 83
INCLUDE, 83, 89
INITIAL, 19, 83, 89
INTERNALS, 90
KEYWORD, 83, 90
LIBRARY, 12, 15, 27, 83, 90

LOCAL, 15, 21, 27, 83, 90, 98

LOOP, 12, 28, 84
MEMORY, 91
OPERATION, 84, 91
PARAMETER, 15, 27, 83
PROTOTYPE, 84, 92
RECORD, 19, 83, 92, 110
REPEAT, 12, 27, 84, 92, 109
RETURN, 84, 93
SEQUENCE, 21, 83, 85, 93
SIZE, 83, 93

SKIP, 84, 92

STOP, 14, 84, 92

TYPE, 83, 93

UNTIL, 14, 84, 101
VECTOR, 94

WATCH, 94

WHILE, 12, 14, 28, 84, 94

Modules, 62
LED, 30
blinking, 30
Multiplexing, 59
polarity, 34
Libraries, 15, 28, 89, 90
Device Drivers, 25
Standard, 95

Network, 118
Multi-drop, 26, 149

L
Launcher
TICKIT.EXE, 10
Lcd
Buss, 113

Commands, 63
Functions, 23, 62, 112, 116

Peripheral 1Cs, 50
44780, 62
DS1621, 53
LTC1298, 25, 70
MAX232, 75
MAX7219, 59
NEMA Instruments, 74
RSB509, 79
Xtender IC, 50
Pin Designations, 136
Power, 154
Connection, 153
savings, 116
Supply, 33
PWM
continuous, 34
efficiency, 35
simulated, 34
Xtender, 50

RAM, 21, 84, 87
Arrays, 22, 87
Stack, 22, 88, 90, 93, 140

Protean Logic

166

Index FBASIC TICKit

RS232, 118, 136, 148
RTCC, 28, 116

Serial Interfaces
3-wire, 59
EEprom 12C, 51
12C, 50
12C simulation, 53
RS232, 74
RS232 pin assignments, 76
SIZE, 83, 86, 93, 97
byte, 28
long, 28
none, 27
word, 27

Tech Support
BBS, 29
Web page, 29

Windows 3.1, 7

Xtender, 50

167 Protean Logic

FBASIC TICkit User Notes

Protean Logic 168

User Notes FBASIC TICkit

169 Protean Logic

FBASIC TICkit User Notes

Protean Logic 170

